HEAL DSpace

Soil failure can be used for seismic protection of structures

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Anastasopoulos, I en
dc.contributor.author Gazetas, G en
dc.contributor.author Loli, M en
dc.contributor.author Apostolou, M en
dc.contributor.author Gerolymos, N en
dc.date.accessioned 2014-03-01T01:34:37Z
dc.date.available 2014-03-01T01:34:37Z
dc.date.issued 2010 en
dc.identifier.issn 1570-761X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20773
dc.subject Bearing capacity failure en
dc.subject Calibration through experimental data en
dc.subject Capacity design en
dc.subject Constitutive modelling en
dc.subject Dynamic analysis en
dc.subject Pushover en
dc.subject Seismic performance en
dc.subject Uplifting en
dc.subject.classification Engineering, Geological en
dc.subject.classification Geosciences, Multidisciplinary en
dc.subject.other Accelerograms en
dc.subject.other Bridge structures en
dc.subject.other Capacity design en
dc.subject.other Constitutive modelling en
dc.subject.other Conventional design en
dc.subject.other Design limits en
dc.subject.other Ductility capacity en
dc.subject.other Earthquake motion en
dc.subject.other Experimental data en
dc.subject.other New approaches en
dc.subject.other New design en
dc.subject.other Nonlinear dynamic time-history analysis en
dc.subject.other Order of magnitude en
dc.subject.other Pushover en
dc.subject.other Residual settlement en
dc.subject.other Seismic Performance en
dc.subject.other Seismic protection en
dc.subject.other Soil failure en
dc.subject.other Structural deformation en
dc.subject.other Bearing capacity en
dc.subject.other Bearings (structural) en
dc.subject.other Calibration en
dc.subject.other Design en
dc.subject.other Dynamic analysis en
dc.subject.other Earthquakes en
dc.subject.other Foundations en
dc.subject.other Ontology en
dc.subject.other Philosophical aspects en
dc.subject.other Quality assurance en
dc.subject.other Seismic waves en
dc.subject.other Soils en
dc.subject.other Welds en
dc.subject.other Seismic design en
dc.subject.other bearing capacity en
dc.subject.other bridge en
dc.subject.other calibration en
dc.subject.other collapse en
dc.subject.other deformation en
dc.subject.other deformation mechanism en
dc.subject.other ductility en
dc.subject.other dynamic analysis en
dc.subject.other earthquake intensity en
dc.subject.other failure analysis en
dc.subject.other foundation en
dc.subject.other loading en
dc.subject.other numerical model en
dc.subject.other reinforcement en
dc.subject.other response analysis en
dc.subject.other seismic design en
dc.subject.other seismic response en
dc.subject.other soil-structure interaction en
dc.subject.other uplift en
dc.title Soil failure can be used for seismic protection of structures en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10518-009-9145-2 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10518-009-9145-2 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract A new seismic design philosophy is illuminated, taking advantage of soil ""failure"" to protect the superstructure. Instead of over-designing the foundation to ensure that the loading stemming from the structural inertia can be ""safely"" transmitted onto the soil (as with conventional capacity design), and then reinforce the superstructure to avoid collapse, why not do exactly the opposite by intentionally under-designing the foundation to act as a ""safety valve""? The need for this ""reversal"" stems from the uncertainty in predicting the actual earthquake motion, and the necessity of developing new more rational and economically efficient earthquake protection solutions. A simple but realistic bridge structure is used as an example to illustrate the effectiveness of the new approach. Two alternatives are compared: one complying with conventional capacity design, with over-designed foundation so that plastic ""hinging"" develops in the superstructure; the other following the new design philosophy, with under-designed foundation, ""inviting"" the plastic ""hinge"" into the soil. Static ""pushover"" analyses reveal that the ductility capacity of the new design concept is an order of magnitude larger than of the conventional design: the advantage of ""utilising"" progressive soil failure. The seismic performance of the two alternatives is investigated through nonlinear dynamic time history analyses, using an ensemble of 29 real accelerograms. It is shown that the performance of both alternatives is totally acceptable for moderate intensity earthquakes, not exceeding the design limits. For large intensity earthquakes, exceeding the design limits, the performance of the new design scheme is proven advantageous, not only avoiding collapse but hardly suffering any inelastic structural deformation. It may however experience increased residual settlement and rotation: a price to pay that must be properly assessed in design. © Springer Science+Business Media B.V. 2009. en
heal.publisher SPRINGER en
heal.journalName Bulletin of Earthquake Engineering en
dc.identifier.doi 10.1007/s10518-009-9145-2 en
dc.identifier.isi ISI:000274707000005 en
dc.identifier.volume 8 en
dc.identifier.issue 2 en
dc.identifier.spage 309 en
dc.identifier.epage 326 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής