dc.contributor.author |
Bartzas, G |
en |
dc.contributor.author |
Komnitsas, K |
en |
dc.date.accessioned |
2014-03-01T01:34:37Z |
|
dc.date.available |
2014-03-01T01:34:37Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0304-3894 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20774 |
|
dc.subject |
Acid mine drainage |
en |
dc.subject |
Geochemical modelling |
en |
dc.subject |
Permeable reactive barrier |
en |
dc.subject |
Zero-valent iron |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
Acid mine drainage |
en |
dc.subject.other |
Acidic solutions |
en |
dc.subject.other |
Amorphous iron |
en |
dc.subject.other |
Amorphous metals |
en |
dc.subject.other |
Column experiments |
en |
dc.subject.other |
Computer codes |
en |
dc.subject.other |
Corrosion products |
en |
dc.subject.other |
Design and operations |
en |
dc.subject.other |
Dynamic flow conditions |
en |
dc.subject.other |
Geochemical modelling |
en |
dc.subject.other |
Green rust |
en |
dc.subject.other |
Inorganic contaminants |
en |
dc.subject.other |
Intermediate product |
en |
dc.subject.other |
Mackinawite |
en |
dc.subject.other |
Metal removal process |
en |
dc.subject.other |
Mineralogical characterization |
en |
dc.subject.other |
Permeable reactive barriers |
en |
dc.subject.other |
PHREEQC |
en |
dc.subject.other |
Reactive zones |
en |
dc.subject.other |
Reduction-oxidation |
en |
dc.subject.other |
SEM |
en |
dc.subject.other |
Solid-phase |
en |
dc.subject.other |
Zero-valent iron |
en |
dc.subject.other |
Drainage |
en |
dc.subject.other |
Fourier transform infrared spectroscopy |
en |
dc.subject.other |
Fourier transforms |
en |
dc.subject.other |
Heavy metals |
en |
dc.subject.other |
Metal ions |
en |
dc.subject.other |
Polymer blends |
en |
dc.subject.other |
Polyvinyl alcohols |
en |
dc.subject.other |
Scanning electron microscopy |
en |
dc.subject.other |
Silica |
en |
dc.subject.other |
Silica sand |
en |
dc.subject.other |
Sorption |
en |
dc.subject.other |
X ray diffraction |
en |
dc.subject.other |
Water pollution control |
en |
dc.subject.other |
ferric hydroxide |
en |
dc.subject.other |
ferric oxide |
en |
dc.subject.other |
ferrous sulfide |
en |
dc.subject.other |
heavy metal |
en |
dc.subject.other |
inorganic compound |
en |
dc.subject.other |
iron |
en |
dc.subject.other |
magnetite |
en |
dc.subject.other |
silicon dioxide |
en |
dc.subject.other |
sulfate |
en |
dc.subject.other |
sulfide |
en |
dc.subject.other |
acid mine drainage |
en |
dc.subject.other |
corrosion |
en |
dc.subject.other |
experimental study |
en |
dc.subject.other |
FTIR spectroscopy |
en |
dc.subject.other |
geochemical method |
en |
dc.subject.other |
iron |
en |
dc.subject.other |
iron hydroxide |
en |
dc.subject.other |
reactive barrier |
en |
dc.subject.other |
sand |
en |
dc.subject.other |
scanning electron microscopy |
en |
dc.subject.other |
silicate |
en |
dc.subject.other |
solid |
en |
dc.subject.other |
sorption |
en |
dc.subject.other |
sulfate |
en |
dc.subject.other |
X-ray diffraction |
en |
dc.subject.other |
acidity |
en |
dc.subject.other |
article |
en |
dc.subject.other |
computer program |
en |
dc.subject.other |
corrosion |
en |
dc.subject.other |
data base |
en |
dc.subject.other |
dynamics |
en |
dc.subject.other |
geochemistry |
en |
dc.subject.other |
heavy metal removal |
en |
dc.subject.other |
infrared spectroscopy |
en |
dc.subject.other |
mineralogy |
en |
dc.subject.other |
model |
en |
dc.subject.other |
oxidation reduction reaction |
en |
dc.subject.other |
permeability |
en |
dc.subject.other |
permeable reactive barrier |
en |
dc.subject.other |
precipitation |
en |
dc.subject.other |
sand |
en |
dc.subject.other |
scanning electrochemical microscopy |
en |
dc.subject.other |
solid |
en |
dc.subject.other |
water treatment |
en |
dc.subject.other |
X ray diffraction |
en |
dc.subject.other |
Acids |
en |
dc.subject.other |
Adsorption |
en |
dc.subject.other |
Chemical Precipitation |
en |
dc.subject.other |
Iron |
en |
dc.subject.other |
Metals |
en |
dc.subject.other |
Models, Chemical |
en |
dc.subject.other |
Oxidation-Reduction |
en |
dc.subject.other |
Oxides |
en |
dc.subject.other |
Silicon Dioxide |
en |
dc.subject.other |
Solutions |
en |
dc.subject.other |
Sulfates |
en |
dc.title |
Solid phase studies and geochemical modelling of low-cost permeable reactive barriers |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jhazmat.2010.07.024 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jhazmat.2010.07.024 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
A continuous column experiment was carried out under dynamic flow conditions in order to study the efficiency of low-cost permeable reactive barriers (PRBs) to remove several inorganic contaminants from acidic solutions. A 50:50 w/w waste iron/sand mixture was used as candidate reactive media in order to activate precipitation and promote sorption and reduction-oxidation mechanisms. Solid phase studies of the exhausted reactive products after column shutdown, using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), confirmed that the principal Fe corrosion products identified in the reactive zone are amorphous iron (hydr)oxides (maghemite/magnetite and goethite), intermediate products (sulfate green rust), and amorphous metal sulfides such as amFeS and/or mackinawite. Geochemical modelling of the metal removal processes, including interactions between reactive media, heavy metal ions and sulfates, and interpretation of the ionic profiles was also carried out by using the speciation/mass transfer computer code PHREEQC-2 and the WATEQ4F database. Mineralogical characterization studies as well as geochemical modelling calculations also indicate that the effect of sulfate and silica sand on the efficiency of the reactive zone should be considered carefully during design and operation of low-cost field PRBs. (C) 2010 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Hazardous Materials |
en |
dc.identifier.doi |
10.1016/j.jhazmat.2010.07.024 |
en |
dc.identifier.isi |
ISI:000282607600038 |
en |
dc.identifier.volume |
183 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
301 |
en |
dc.identifier.epage |
308 |
en |