HEAL DSpace

Solutions and multiple solutions for periodic p-laplacian systems with a non-smooth potential

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gasinski, L en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:34:37Z
dc.date.available 2014-03-01T01:34:37Z
dc.date.issued 2010 en
dc.identifier.issn 0003-6811 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20776
dc.subject Generalized subdifferential en
dc.subject Locally lipschitz functional en
dc.subject Non-smooth potential en
dc.subject Non-smooth ps-condition en
dc.subject Non-smooth second deformation theorem en
dc.subject Vector p-laplacian en
dc.subject.classification Mathematics, Applied en
dc.subject.other BOUNDARY-VALUE-PROBLEMS en
dc.subject.other 2ND-ORDER DIFFERENTIAL-INCLUSIONS en
dc.subject.other EXISTENCE en
dc.subject.other OPERATORS en
dc.title Solutions and multiple solutions for periodic p-laplacian systems with a non-smooth potential en
heal.type journalArticle en
heal.identifier.primary 10.1080/00036810802713909 en
heal.identifier.secondary http://dx.doi.org/10.1080/00036810802713909 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In this article, we study non-linear periodic systems driven by the ordinary vector p-Laplacian differential operator and with a non-smooth potential. Using variational methods based on the non-smooth critical point theory, we prove an existence and a multiplicity theorems. The conditions on the non-smooth potential do not imply that the corresponding Euler functional of the problem is coercive. © 2010 Taylor & Francis. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName Applicable Analysis en
dc.identifier.doi 10.1080/00036810802713909 en
dc.identifier.isi ISI:000274423100006 en
dc.identifier.volume 89 en
dc.identifier.issue 2 en
dc.identifier.spage 207 en
dc.identifier.epage 219 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής