dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:34:37Z |
|
dc.date.available |
2014-03-01T01:34:37Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0003-6811 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20776 |
|
dc.subject |
Generalized subdifferential |
en |
dc.subject |
Locally lipschitz functional |
en |
dc.subject |
Non-smooth potential |
en |
dc.subject |
Non-smooth ps-condition |
en |
dc.subject |
Non-smooth second deformation theorem |
en |
dc.subject |
Vector p-laplacian |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
2ND-ORDER DIFFERENTIAL-INCLUSIONS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
OPERATORS |
en |
dc.title |
Solutions and multiple solutions for periodic p-laplacian systems with a non-smooth potential |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/00036810802713909 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/00036810802713909 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this article, we study non-linear periodic systems driven by the ordinary vector p-Laplacian differential operator and with a non-smooth potential. Using variational methods based on the non-smooth critical point theory, we prove an existence and a multiplicity theorems. The conditions on the non-smooth potential do not imply that the corresponding Euler functional of the problem is coercive. © 2010 Taylor & Francis. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
Applicable Analysis |
en |
dc.identifier.doi |
10.1080/00036810802713909 |
en |
dc.identifier.isi |
ISI:000274423100006 |
en |
dc.identifier.volume |
89 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
207 |
en |
dc.identifier.epage |
219 |
en |