dc.contributor.author |
Florios, K |
en |
dc.contributor.author |
Mavrotas, G |
en |
dc.contributor.author |
Diakoulaki, D |
en |
dc.date.accessioned |
2014-03-01T01:34:37Z |
|
dc.date.available |
2014-03-01T01:34:37Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0377-2217 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20777 |
|
dc.subject |
Branch and bound |
en |
dc.subject |
Evolutionary algorithms |
en |
dc.subject |
Knapsack problem |
en |
dc.subject |
Multiobjective |
en |
dc.subject.classification |
Management |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
Adaptive parameters |
en |
dc.subject.other |
Approximate algorithms |
en |
dc.subject.other |
Branch and bound |
en |
dc.subject.other |
Branch and bounds |
en |
dc.subject.other |
Branching heuristics |
en |
dc.subject.other |
Constraint methods |
en |
dc.subject.other |
Data sets |
en |
dc.subject.other |
Degree of approximation |
en |
dc.subject.other |
Epsilon-constraint method |
en |
dc.subject.other |
Exact algorithms |
en |
dc.subject.other |
General purpose |
en |
dc.subject.other |
Knapsack problem |
en |
dc.subject.other |
Knapsack problems |
en |
dc.subject.other |
Meta heuristics |
en |
dc.subject.other |
Multi objective evolutionary algorithms |
en |
dc.subject.other |
Multi-constraints |
en |
dc.subject.other |
Multi-criteria |
en |
dc.subject.other |
Multiobjective |
en |
dc.subject.other |
NSGA-II |
en |
dc.subject.other |
Objective functions |
en |
dc.subject.other |
Operational research |
en |
dc.subject.other |
Pareto front |
en |
dc.subject.other |
Specific problems |
en |
dc.subject.other |
Adaptive algorithms |
en |
dc.subject.other |
Approximation algorithms |
en |
dc.subject.other |
Heuristic methods |
en |
dc.subject.other |
Integer programming |
en |
dc.subject.other |
Linear programming |
en |
dc.subject.other |
Multiobjective optimization |
en |
dc.subject.other |
Evolutionary algorithms |
en |
dc.title |
Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ejor.2009.06.024 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ejor.2009.06.024 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature. with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the multicriteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three branching heuristics and a more general purpose composite branching and construction heuristic are devised. Comparison is made to the published results from another exact algorithm, the adaptive epsilon-constraint method [Laumanns, M., Thiele, L, Zitzler, E., 2006. An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method. European journal of operational Research 169, 932-942], using the same data sets. Furthermore, the same problems are solved using standard multiobjective evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results from the exact case show that the branching heuristics greatly improve the performance of the MCBB algorithm, which becomes faster than the adaptive epsilon-constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the coverage metric (especially for the largest instance). (C) 2009 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
European Journal of Operational Research |
en |
dc.identifier.doi |
10.1016/j.ejor.2009.06.024 |
en |
dc.identifier.isi |
ISI:000272073100002 |
en |
dc.identifier.volume |
203 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
14 |
en |
dc.identifier.epage |
21 |
en |