HEAL DSpace

Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Florios, K en
dc.contributor.author Mavrotas, G en
dc.contributor.author Diakoulaki, D en
dc.date.accessioned 2014-03-01T01:34:37Z
dc.date.available 2014-03-01T01:34:37Z
dc.date.issued 2010 en
dc.identifier.issn 0377-2217 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20777
dc.subject Branch and bound en
dc.subject Evolutionary algorithms en
dc.subject Knapsack problem en
dc.subject Multiobjective en
dc.subject.classification Management en
dc.subject.classification Operations Research & Management Science en
dc.subject.other Adaptive parameters en
dc.subject.other Approximate algorithms en
dc.subject.other Branch and bound en
dc.subject.other Branch and bounds en
dc.subject.other Branching heuristics en
dc.subject.other Constraint methods en
dc.subject.other Data sets en
dc.subject.other Degree of approximation en
dc.subject.other Epsilon-constraint method en
dc.subject.other Exact algorithms en
dc.subject.other General purpose en
dc.subject.other Knapsack problem en
dc.subject.other Knapsack problems en
dc.subject.other Meta heuristics en
dc.subject.other Multi objective evolutionary algorithms en
dc.subject.other Multi-constraints en
dc.subject.other Multi-criteria en
dc.subject.other Multiobjective en
dc.subject.other NSGA-II en
dc.subject.other Objective functions en
dc.subject.other Operational research en
dc.subject.other Pareto front en
dc.subject.other Specific problems en
dc.subject.other Adaptive algorithms en
dc.subject.other Approximation algorithms en
dc.subject.other Heuristic methods en
dc.subject.other Integer programming en
dc.subject.other Linear programming en
dc.subject.other Multiobjective optimization en
dc.subject.other Evolutionary algorithms en
dc.title Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ejor.2009.06.024 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ejor.2009.06.024 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack problem (MOMCKP) from the literature. with three objective functions and three constraints. We use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the multicriteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three branching heuristics and a more general purpose composite branching and construction heuristic are devised. Comparison is made to the published results from another exact algorithm, the adaptive epsilon-constraint method [Laumanns, M., Thiele, L, Zitzler, E., 2006. An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method. European journal of operational Research 169, 932-942], using the same data sets. Furthermore, the same problems are solved using standard multiobjective evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results from the exact case show that the branching heuristics greatly improve the performance of the MCBB algorithm, which becomes faster than the adaptive epsilon-constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the coverage metric (especially for the largest instance). (C) 2009 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName European Journal of Operational Research en
dc.identifier.doi 10.1016/j.ejor.2009.06.024 en
dc.identifier.isi ISI:000272073100002 en
dc.identifier.volume 203 en
dc.identifier.issue 1 en
dc.identifier.spage 14 en
dc.identifier.epage 21 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής