HEAL DSpace

Some issues arising in finding the detachment point in calendering of plastic sheets

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitsoulis, E en
dc.date.accessioned 2014-03-01T01:34:37Z
dc.date.available 2014-03-01T01:34:37Z
dc.date.issued 2010 en
dc.identifier.issn 8756-0879 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20778
dc.subject calendering en
dc.subject detachment point en
dc.subject finite elements en
dc.subject free surfaces. en
dc.subject power-law model en
dc.subject sheet thickness en
dc.subject.classification Materials Science, Coatings & Films en
dc.subject.other detachment point en
dc.subject.other Finite Element en
dc.subject.other Free surfaces en
dc.subject.other Power law model en
dc.subject.other Sheet thickness en
dc.subject.other Approximation theory en
dc.subject.other Boundary element method en
dc.subject.other Calendering en
dc.subject.other Calenders en
dc.subject.other Contact angle en
dc.subject.other Crystallography en
dc.subject.other Indexing (of information) en
dc.subject.other Plastic sheets en
dc.subject.other Polymer melts en
dc.subject.other Surfaces en
dc.subject.other Traction (friction) en
dc.subject.other Two dimensional en
dc.subject.other Finite element method en
dc.title Some issues arising in finding the detachment point in calendering of plastic sheets en
heal.type journalArticle en
heal.identifier.primary 10.1177/8756087910376144 en
heal.identifier.secondary http://dx.doi.org/10.1177/8756087910376144 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract Calendering is a process for producing plastic sheets of a desired final thickness and appearance. The thickness of the exiting sheet during a calendering operation is uniquely found by the lubrication approximation theory and the application of the Swift boundary conditions, which dictate that both the pressure and its axial derivative are zero at detachment. This cannot be used in a 2D analysis of the process, where the detachment point is the anchor of a free surface, and hence a singular point where both the pressure and the stresses go through numerical oscillations. This difficulty can be circumvented by using the boundary element method (BEM), which uses as primary variables velocities and tractions, and thus avoids pressures and stresses. Then the detachment point is found as the point where the tangential traction becomes zero. Numerical tests undertaken here with the finite element method (FEM) show that the LAT results can be used as a good approximation for the detachment point, which is then fixed. Comparisons with 2D BEM results show a good agreement for all flow field variables. However, the exact position of the detachment point in a 2D FEM analysis is still elusive, since for viscous polymer melts the contact angle is not known and should be part of the solution. Some thoughts are given about how to tackle this still unresolved issue, based on double nodes with discontinuous velocities and pressures. © The Author(s), 2010. en
heal.publisher SAGE PUBLICATIONS LTD en
heal.journalName Journal of Plastic Film and Sheeting en
dc.identifier.doi 10.1177/8756087910376144 en
dc.identifier.isi ISI:000281316600002 en
dc.identifier.volume 26 en
dc.identifier.issue 2 en
dc.identifier.spage 141 en
dc.identifier.epage 165 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής