dc.contributor.author |
Caridakis, G |
en |
dc.contributor.author |
Karpouzis, K |
en |
dc.contributor.author |
Drosopoulos, A |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T01:34:38Z |
|
dc.date.available |
2014-03-01T01:34:38Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0167-8655 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20780 |
|
dc.subject |
Gesture recognition |
en |
dc.subject |
Gesture-based interaction |
en |
dc.subject |
Markov models |
en |
dc.subject |
Self organizing maps |
en |
dc.subject |
Spatiotemporal pattern recognition |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.other |
Appropriate distances |
en |
dc.subject.other |
Classification mechanism |
en |
dc.subject.other |
Gesture-based interaction |
en |
dc.subject.other |
Hand gesture |
en |
dc.subject.other |
Markov map |
en |
dc.subject.other |
Markov models |
en |
dc.subject.other |
Optimal trajectories |
en |
dc.subject.other |
Processing speed |
en |
dc.subject.other |
Proposed architectures |
en |
dc.subject.other |
Real time |
en |
dc.subject.other |
Recognition process |
en |
dc.subject.other |
Self organizing |
en |
dc.subject.other |
Self organizing feature maps |
en |
dc.subject.other |
Spatiotemporal information |
en |
dc.subject.other |
Spatiotemporal pattern recognition |
en |
dc.subject.other |
Video sequences |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Markov processes |
en |
dc.subject.other |
Self organizing maps |
en |
dc.subject.other |
Video recording |
en |
dc.subject.other |
Gesture recognition |
en |
dc.title |
SOMM: Self organizing Markov map for gesture recognition |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.patrec.2009.09.009 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.patrec.2009.09.009 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Present work introduces a probabilistic recognition scheme for hand gestures. Self organizing feature maps are used to model spatiotemporal information extracted through image processing. Two models are built for each gesture category and, along with appropriate distance metrics, produce a validated classification mechanism that performs consistently during experiments on acted gestures video sequences. The main focus of current work is to tackle intra and inter user variability during gesture performance by adding flexibility to the decoding procedure and allowing the algorithm to perform an optimal trajectory search while the processing speed of both the feature extraction and the recognition process indicate that the proposed architecture is appropriate for real time and large scale lexicon applications. (C) 2009 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Pattern Recognition Letters |
en |
dc.identifier.doi |
10.1016/j.patrec.2009.09.009 |
en |
dc.identifier.isi |
ISI:000272518000007 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
52 |
en |
dc.identifier.epage |
59 |
en |