HEAL DSpace

SOMM: Self organizing Markov map for gesture recognition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Caridakis, G en
dc.contributor.author Karpouzis, K en
dc.contributor.author Drosopoulos, A en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T01:34:38Z
dc.date.available 2014-03-01T01:34:38Z
dc.date.issued 2010 en
dc.identifier.issn 0167-8655 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20780
dc.subject Gesture recognition en
dc.subject Gesture-based interaction en
dc.subject Markov models en
dc.subject Self organizing maps en
dc.subject Spatiotemporal pattern recognition en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Appropriate distances en
dc.subject.other Classification mechanism en
dc.subject.other Gesture-based interaction en
dc.subject.other Hand gesture en
dc.subject.other Markov map en
dc.subject.other Markov models en
dc.subject.other Optimal trajectories en
dc.subject.other Processing speed en
dc.subject.other Proposed architectures en
dc.subject.other Real time en
dc.subject.other Recognition process en
dc.subject.other Self organizing en
dc.subject.other Self organizing feature maps en
dc.subject.other Spatiotemporal information en
dc.subject.other Spatiotemporal pattern recognition en
dc.subject.other Video sequences en
dc.subject.other Feature extraction en
dc.subject.other Markov processes en
dc.subject.other Self organizing maps en
dc.subject.other Video recording en
dc.subject.other Gesture recognition en
dc.title SOMM: Self organizing Markov map for gesture recognition en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.patrec.2009.09.009 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.patrec.2009.09.009 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract Present work introduces a probabilistic recognition scheme for hand gestures. Self organizing feature maps are used to model spatiotemporal information extracted through image processing. Two models are built for each gesture category and, along with appropriate distance metrics, produce a validated classification mechanism that performs consistently during experiments on acted gestures video sequences. The main focus of current work is to tackle intra and inter user variability during gesture performance by adding flexibility to the decoding procedure and allowing the algorithm to perform an optimal trajectory search while the processing speed of both the feature extraction and the recognition process indicate that the proposed architecture is appropriate for real time and large scale lexicon applications. (C) 2009 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Pattern Recognition Letters en
dc.identifier.doi 10.1016/j.patrec.2009.09.009 en
dc.identifier.isi ISI:000272518000007 en
dc.identifier.volume 31 en
dc.identifier.issue 1 en
dc.identifier.spage 52 en
dc.identifier.epage 59 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής