HEAL DSpace

Spectral moment features augmented by low order cepstral coefficients for robust ASR

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsiakoulis, P en
dc.contributor.author Potamianos, A en
dc.contributor.author Dimitriadis, D en
dc.date.accessioned 2014-03-01T01:34:38Z
dc.date.available 2014-03-01T01:34:38Z
dc.date.issued 2010 en
dc.identifier.issn 1070-9908 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20781
dc.subject First spectral moment en
dc.subject Low order cepstral coefficients en
dc.subject Robust speech recognition en
dc.subject SMAC en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Automatic speech recognition en
dc.subject.other Central frequency en
dc.subject.other Cepstral coefficients en
dc.subject.other Frequency domains en
dc.subject.other Low order en
dc.subject.other Robust ASR en
dc.subject.other Robust speech recognition en
dc.subject.other Spectral moments en
dc.subject.other Spectral tilt en
dc.subject.other Speech spectra en
dc.subject.other Time-frequency distributions en
dc.subject.other Speech recognition en
dc.title Spectral moment features augmented by low order cepstral coefficients for robust ASR en
heal.type journalArticle en
heal.identifier.primary 10.1109/LSP.2010.2046349 en
heal.identifier.secondary 5437270 en
heal.identifier.secondary http://dx.doi.org/10.1109/LSP.2010.2046349 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract We propose a novel Automatic Speech Recognition (ASR) front-end, that consists of the first central Spectral Moment time-frequency distribution Augmented by low order Cepstral coefficients (SMAC). We prove that the first central spectral moment is proportional to the spectral derivative with respect to the filter's central frequency. Consequently, the spectral moment is an estimate of the frequency domain derivative of the speech spectrum. However information related to the entire speech spectrum, such as the energy and the spectral tilt, is not adequately modeled. We propose adding this information with few cepstral coefficients. Furthermore, we use a mel-spaced Gabor filterbank with 70% frequency overlap in order to overcome the sensitivity to pitch harmonics. The novel SMAC front-end was evaluated for the speech recognition task for a variety of recording conditions. The experimental results have shown that SMAC performs at least as well as the standard MFCC front-end in clean conditions, and significantly outperforms MFCCs in noisy conditions. © 2006 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Signal Processing Letters en
dc.identifier.doi 10.1109/LSP.2010.2046349 en
dc.identifier.isi ISI:000277048600004 en
dc.identifier.volume 17 en
dc.identifier.issue 6 en
dc.identifier.spage 551 en
dc.identifier.epage 554 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής