dc.contributor.author |
Lazopoulos, KA |
en |
dc.contributor.author |
Lazopoulos, AK |
en |
dc.date.accessioned |
2014-03-01T01:34:39Z |
|
dc.date.available |
2014-03-01T01:34:39Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0044-2267 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20786 |
|
dc.subject |
Critical load |
en |
dc.subject |
Flutter |
en |
dc.subject |
Non-conservative |
en |
dc.subject |
Stability |
en |
dc.subject |
Strain gradient elasticity |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mechanics |
en |
dc.title |
Stability of a gradient elastic beam compressed by non-conservative forces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/zamm.200900231 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/zamm.200900231 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The critical loads for five non-conservative problems are defined under the context of gradient elasticity theory of a beam. The first problem deals with the stability of a gradient elastic beam compressed by a follower force (Beck's problem) and the second deals with the stability of a gradient elastic beam compressed by a force with a fixed line of action (Rent's problem). The governing dynamic equation with the boundary conditions is formulated on the bases of simple linear elasticity theory with the beam mass concentrated on the moving end. Also the case with uniform distribution of the mass along the beam will be considered. Further the effect of an additional conservative force acting on the moving end of the beam will also be discussed. Numerical applications indicate that although the surface energy term does not have a substantial effect. the intrinsic length due to gradient elasticity is of major importance. In fact, it increases of the critical load. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
en |
heal.publisher |
WILEY-V C H VERLAG GMBH |
en |
heal.journalName |
ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik |
en |
dc.identifier.doi |
10.1002/zamm.200900231 |
en |
dc.identifier.isi |
ISI:000275804000001 |
en |
dc.identifier.volume |
90 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
174 |
en |
dc.identifier.epage |
184 |
en |