HEAL DSpace

Steady and unsteady flow within an axisymmetric tube dilatation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stamatopoulos, Ch en
dc.contributor.author Papaharilaou, Y en
dc.contributor.author Mathioulakis, DS en
dc.contributor.author Katsamouris, A en
dc.date.accessioned 2014-03-01T01:34:41Z
dc.date.available 2014-03-01T01:34:41Z
dc.date.issued 2010 en
dc.identifier.issn 0894-1777 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20792
dc.subject Flow separation-reattachment en
dc.subject Tube dilatation en
dc.subject Vortex en
dc.subject Wall shear en
dc.subject.classification Thermodynamics en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other 2-D PIV en
dc.subject.other Absolute values en
dc.subject.other Axial velocity en
dc.subject.other Axisymmetric en
dc.subject.other Cavity regions en
dc.subject.other Flow reattachment en
dc.subject.other Flow topology en
dc.subject.other Fluid particles en
dc.subject.other Local maximum en
dc.subject.other Longitudinal axis en
dc.subject.other Massless particles en
dc.subject.other Near fields en
dc.subject.other Numerical code en
dc.subject.other Numerical predictions en
dc.subject.other Pressure peaks en
dc.subject.other Pressure variations en
dc.subject.other Recirculation zones en
dc.subject.other Separated flows en
dc.subject.other Stagnation points en
dc.subject.other Stress values en
dc.subject.other Time progress en
dc.subject.other Time-dependent flow en
dc.subject.other Tube dilatation en
dc.subject.other Velocity profiles en
dc.subject.other Vortex en
dc.subject.other Vortex rings en
dc.subject.other Wall pressure en
dc.subject.other Wall shear en
dc.subject.other Wall shear stress en
dc.subject.other Womersley numbers en
dc.subject.other Flow separation en
dc.subject.other Shear stress en
dc.subject.other Strength of materials en
dc.subject.other Tubes (components) en
dc.title Steady and unsteady flow within an axisymmetric tube dilatation en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.expthermflusci.2010.02.008 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.expthermflusci.2010.02.008 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract The flow field in an axisymmetric tube dilatation is studied employing a 2D PIV system and the commercial numerical code FLUENT. Experiment and numerical predictions are in good agreement providing similar trends and the same flow topology. For the steady case and for Re varying in the range 100-700, the recirculation zone length increases with Re, the flow reattachment line being displaced towards the exit of the model. Upstream of this line and a small distance from it, negative velocity maximizes close to the wall as well as the wall shear stress (in absolute value). Downstream of this region, the wall pressure peaks and wall shear takes a local maximum at the model exit. In the rest part of the cavity both wall shear and pressure do not practically vary due to separated flow. The axial velocity on the longitudinal axis of the model does not change streamwise for higher Re (Re = 690), resembling the near field of a jet, entraining fluid from the cavity region. In the unsteady case the flow rate is sinusoidal, the Womersley number is 3.3 and peak Re = 272. During early acceleration, a vortex ring is formed at the proximal part of the cavity and two stagnation points appear on the longitudinal axis of the model approaching each other as time progresses, eventually disappearing when the majority of the fluid particles changes direction. The velocity profile at the exit is most of the cycle blunt compared to the parabolic type profile at the model entrance. In contrast to the steady case, the pressure variation does not exhibit a local peak within the cavity rather varying in a smooth way. Conversely, wall shear stress shows high peaks at the distal end of the dilatation being proportional to the time dependent flow rate. The reattachment line travels along the wall, as well as the local pressure peak which is always located downstream of it. Massless particles released at various locations and time instants within a cycle are not trapped in the recirculation zone, being exposed to varying shear stress values. (C) 2010 Elsevier Inc. All rights reserved. en
heal.publisher ELSEVIER SCIENCE INC en
heal.journalName Experimental Thermal and Fluid Science en
dc.identifier.doi 10.1016/j.expthermflusci.2010.02.008 en
dc.identifier.isi ISI:000278510700011 en
dc.identifier.volume 34 en
dc.identifier.issue 7 en
dc.identifier.spage 915 en
dc.identifier.epage 927 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής