dc.contributor.author |
Bourkas, G |
en |
dc.contributor.author |
Sideridis, E |
en |
dc.contributor.author |
Younis, C |
en |
dc.contributor.author |
Prassianakis, IN |
en |
dc.contributor.author |
Kitopoulos, V |
en |
dc.date.accessioned |
2014-03-01T01:34:41Z |
|
dc.date.available |
2014-03-01T01:34:41Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0039-2480 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20796 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-78149419604&partnerID=40&md5=5e2bfd15b63c22efea3c140333c26b4a |
en |
dc.subject |
Fracture strain |
en |
dc.subject |
Low adhesion quality |
en |
dc.subject |
Microstructure |
en |
dc.subject |
Perfect adhesion quality |
en |
dc.subject |
Resin/filler systems |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Cube model |
en |
dc.subject.other |
Evaluation Method |
en |
dc.subject.other |
Experimental data |
en |
dc.subject.other |
Fracture strain |
en |
dc.subject.other |
High strength |
en |
dc.subject.other |
Low adhesion |
en |
dc.subject.other |
Lower bounds |
en |
dc.subject.other |
matrix |
en |
dc.subject.other |
Particulate composites |
en |
dc.subject.other |
Perfect adhesion quality |
en |
dc.subject.other |
Representative volume elements |
en |
dc.subject.other |
Resin/filler systems |
en |
dc.subject.other |
Theoretical result |
en |
dc.subject.other |
Three component |
en |
dc.subject.other |
Upper Bound |
en |
dc.subject.other |
Adhesion |
en |
dc.subject.other |
Fillers |
en |
dc.subject.other |
Fracture |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Microstructure |
en |
dc.subject.other |
Strain |
en |
dc.subject.other |
Tensile strength |
en |
dc.title |
Strength and fracture strain of resin/filler systems using two models (1) of perfect and (2) of low adhesion quality |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The tensile strength and the fracture strain of particulate composites have been evaluated for the case that adhesion exists between the matrix and filler. Two models, each of three components on the basis of cube-within-cube formation, have been used as representative volume elements. By comparing the derived theoretical results of the strength with experimental data for treated and untreated particles in resin/filler systems, the first model can be characterised as corresponding to perfect adhesion quality between the matrix and filler, while the second one to low adhesion quality. The strength predicted by the first model is close to that of treated particles corresponding to high strength. This model corresponds to an upper bound of the strength in cube-within-cube models. The strength predicted by the second model is close to that of untreated particles corresponding to low strength, but this model does not correspond to a lower bound of strength. The systems used for comparison were resin/glass, resin/iron and resin/SiC particulate composites. For the case that adhesion exists between the matrix and filler, the strengths and fracture strains predicted by the present models are in agreement to those provided by an existing evaluation method in the literature. (C) 2010 Journal of Mechanical Engineering. All rights reserved. |
en |
heal.publisher |
ASSOC MECHANICAL ENGINEERS TECHNICIANS SLOVENIA |
en |
heal.journalName |
Strojniski Vestnik/Journal of Mechanical Engineering |
en |
dc.identifier.isi |
ISI:000284199100004 |
en |
dc.identifier.volume |
56 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
625 |
en |
dc.identifier.epage |
636 |
en |