HEAL DSpace

The interior transmission eigenvalue problem

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Cakoni, F en
dc.contributor.author Colton, D en
dc.contributor.author Gintides, D en
dc.date.accessioned 2014-03-01T01:34:46Z
dc.date.available 2014-03-01T01:34:46Z
dc.date.issued 2010 en
dc.identifier.issn 0036-1410 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20845
dc.subject Inhomogeneous medium en
dc.subject Interior transmission problem en
dc.subject Inverse scattering en
dc.subject Transmission eigenvalues en
dc.subject.classification Mathematics, Applied en
dc.subject.other Complex eigenvalues en
dc.subject.other Complex planes en
dc.subject.other Eigen-value en
dc.subject.other Eigenvalue problem en
dc.subject.other Eigenvalues en
dc.subject.other Field patterns en
dc.subject.other Homogeneous media en
dc.subject.other Index of refraction en
dc.subject.other Inhomogeneous medium en
dc.subject.other Interior transmission problems en
dc.subject.other Inverse scattering en
dc.subject.other Scattered waves en
dc.subject.other Inverse problems en
dc.subject.other Refraction en
dc.subject.other Refractive index en
dc.subject.other Scattering en
dc.subject.other Eigenvalues and eigenfunctions en
dc.title The interior transmission eigenvalue problem en
heal.type journalArticle en
heal.identifier.primary 10.1137/100793542 en
heal.identifier.secondary http://dx.doi.org/10.1137/100793542 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract We consider the inverse problem of determining the spherically symmetric index of refraction n(r) from a knowledge of the corresponding transmission eigenvalues (which can be determined from field pattern of the scattered wave). We also show that for constant index of refraction n(r) = n, the smallest transmission eigenvalue suffices to determine n, complex eigenvalues exist for n sufficiently small and, for homogeneous media of general shape, determine a region in the complex plane where complex eigenvalues must lie. © 2010 Society for Industrial and Applied Mathematics. en
heal.publisher SIAM PUBLICATIONS en
heal.journalName SIAM Journal on Mathematical Analysis en
dc.identifier.doi 10.1137/100793542 en
dc.identifier.isi ISI:000285508100022 en
dc.identifier.volume 42 en
dc.identifier.issue 6 en
dc.identifier.spage 2912 en
dc.identifier.epage 2921 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής