dc.contributor.author |
Cakoni, F |
en |
dc.contributor.author |
Colton, D |
en |
dc.contributor.author |
Gintides, D |
en |
dc.date.accessioned |
2014-03-01T01:34:46Z |
|
dc.date.available |
2014-03-01T01:34:46Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0036-1410 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20845 |
|
dc.subject |
Inhomogeneous medium |
en |
dc.subject |
Interior transmission problem |
en |
dc.subject |
Inverse scattering |
en |
dc.subject |
Transmission eigenvalues |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Complex eigenvalues |
en |
dc.subject.other |
Complex planes |
en |
dc.subject.other |
Eigen-value |
en |
dc.subject.other |
Eigenvalue problem |
en |
dc.subject.other |
Eigenvalues |
en |
dc.subject.other |
Field patterns |
en |
dc.subject.other |
Homogeneous media |
en |
dc.subject.other |
Index of refraction |
en |
dc.subject.other |
Inhomogeneous medium |
en |
dc.subject.other |
Interior transmission problems |
en |
dc.subject.other |
Inverse scattering |
en |
dc.subject.other |
Scattered waves |
en |
dc.subject.other |
Inverse problems |
en |
dc.subject.other |
Refraction |
en |
dc.subject.other |
Refractive index |
en |
dc.subject.other |
Scattering |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.title |
The interior transmission eigenvalue problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1137/100793542 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1137/100793542 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We consider the inverse problem of determining the spherically symmetric index of refraction n(r) from a knowledge of the corresponding transmission eigenvalues (which can be determined from field pattern of the scattered wave). We also show that for constant index of refraction n(r) = n, the smallest transmission eigenvalue suffices to determine n, complex eigenvalues exist for n sufficiently small and, for homogeneous media of general shape, determine a region in the complex plane where complex eigenvalues must lie. © 2010 Society for Industrial and Applied Mathematics. |
en |
heal.publisher |
SIAM PUBLICATIONS |
en |
heal.journalName |
SIAM Journal on Mathematical Analysis |
en |
dc.identifier.doi |
10.1137/100793542 |
en |
dc.identifier.isi |
ISI:000285508100022 |
en |
dc.identifier.volume |
42 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
2912 |
en |
dc.identifier.epage |
2921 |
en |