dc.contributor.author |
Panagiotou, E |
en |
dc.contributor.author |
Millett, KC |
en |
dc.contributor.author |
Lambropoulou, S |
en |
dc.date.accessioned |
2014-03-01T01:34:46Z |
|
dc.date.available |
2014-03-01T01:34:46Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1751-8113 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20847 |
|
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
TOPOLOGICAL CONSTRAINTS |
en |
dc.subject.other |
CROSSING NUMBER |
en |
dc.subject.other |
RANDOM KNOTS |
en |
dc.subject.other |
STATISTICAL MECHANICS |
en |
dc.subject.other |
POLYNOMIAL INVARIANT |
en |
dc.subject.other |
SCALING BEHAVIOR |
en |
dc.subject.other |
SUPERCOILED DNA |
en |
dc.subject.other |
TOTAL CURVATURE |
en |
dc.subject.other |
CLOSED CURVES |
en |
dc.subject.other |
TOTAL TORSION |
en |
dc.title |
The linking number and the writhe of uniform random walks and polygons in confined spaces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/1751-8113/43/4/045208 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/1751-8113/43/4/045208 |
en |
heal.identifier.secondary |
045208 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Random walks and polygons are used to model polymers. In this paper we consider the extension of the writhe, self-linking number and linking number to open chains. We then study the average writhe, self-linking and linking number of random walks and polygons over the space of configurations as a function of their length. We show that the mean squared linking number, the mean squared writhe and the mean squared self-linking number of oriented uniform random walks or polygons of length n, in a convex confined space, are of the form O(n 2). Moreover, for a fixed simple closed curve in a convex confined space, we prove that the mean absolute value of the linking number between this curve and a uniform random walk or polygon of n edges is of the form O(√n. Our numerical studies confirm those results. They also indicate that the mean absolute linking number between any two oriented uniform random walks or polygons, of n edges each, is of the form O(n). Equilateral random walks and polygons are used to model polymers in θ-conditions. We use numerical simulations to investigate how the self-linking and linking number of equilateral random walks scale with their length. © 2010 IOP Publishing Ltd. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Journal of Physics A: Mathematical and Theoretical |
en |
dc.identifier.doi |
10.1088/1751-8113/43/4/045208 |
en |
dc.identifier.isi |
ISI:000273437500014 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
4 |
en |