HEAL DSpace

The linking number and the writhe of uniform random walks and polygons in confined spaces

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Panagiotou, E en
dc.contributor.author Millett, KC en
dc.contributor.author Lambropoulou, S en
dc.date.accessioned 2014-03-01T01:34:46Z
dc.date.available 2014-03-01T01:34:46Z
dc.date.issued 2010 en
dc.identifier.issn 1751-8113 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20847
dc.subject.classification Physics, Multidisciplinary en
dc.subject.classification Physics, Mathematical en
dc.subject.other TOPOLOGICAL CONSTRAINTS en
dc.subject.other CROSSING NUMBER en
dc.subject.other RANDOM KNOTS en
dc.subject.other STATISTICAL MECHANICS en
dc.subject.other POLYNOMIAL INVARIANT en
dc.subject.other SCALING BEHAVIOR en
dc.subject.other SUPERCOILED DNA en
dc.subject.other TOTAL CURVATURE en
dc.subject.other CLOSED CURVES en
dc.subject.other TOTAL TORSION en
dc.title The linking number and the writhe of uniform random walks and polygons in confined spaces en
heal.type journalArticle en
heal.identifier.primary 10.1088/1751-8113/43/4/045208 en
heal.identifier.secondary http://dx.doi.org/10.1088/1751-8113/43/4/045208 en
heal.identifier.secondary 045208 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract Random walks and polygons are used to model polymers. In this paper we consider the extension of the writhe, self-linking number and linking number to open chains. We then study the average writhe, self-linking and linking number of random walks and polygons over the space of configurations as a function of their length. We show that the mean squared linking number, the mean squared writhe and the mean squared self-linking number of oriented uniform random walks or polygons of length n, in a convex confined space, are of the form O(n 2). Moreover, for a fixed simple closed curve in a convex confined space, we prove that the mean absolute value of the linking number between this curve and a uniform random walk or polygon of n edges is of the form O(√n. Our numerical studies confirm those results. They also indicate that the mean absolute linking number between any two oriented uniform random walks or polygons, of n edges each, is of the form O(n). Equilateral random walks and polygons are used to model polymers in θ-conditions. We use numerical simulations to investigate how the self-linking and linking number of equilateral random walks scale with their length. © 2010 IOP Publishing Ltd. en
heal.publisher IOP PUBLISHING LTD en
heal.journalName Journal of Physics A: Mathematical and Theoretical en
dc.identifier.doi 10.1088/1751-8113/43/4/045208 en
dc.identifier.isi ISI:000273437500014 en
dc.identifier.volume 43 en
dc.identifier.issue 4 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής