HEAL DSpace

The problem of sharp notch in microstructured solids governed by dipolar gradient elasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gourgiotis, PA en
dc.contributor.author Sifnaiou, MD en
dc.contributor.author Georgiadis, HG en
dc.date.accessioned 2014-03-01T01:34:46Z
dc.date.available 2014-03-01T01:34:46Z
dc.date.issued 2010 en
dc.identifier.issn 0376-9429 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20850
dc.subject Asymptotics en
dc.subject Dipolar gradient elasticity en
dc.subject Knein-Williams technique en
dc.subject Micro-mechanics en
dc.subject Microstructure en
dc.subject Notch en
dc.subject Re-entrant corner en
dc.subject Toupin-Mindlin theory en
dc.subject Wedge en
dc.subject.classification Mechanics en
dc.subject.other Asymptotics en
dc.subject.other Dipolar gradient elasticity en
dc.subject.other Mindlin theory en
dc.subject.other Notch en
dc.subject.other Re-entrant corner en
dc.subject.other Wedge en
dc.subject.other Williams en
dc.subject.other Continuum mechanics en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Elasticity en
dc.subject.other Elastohydrodynamics en
dc.subject.other Fracture mechanics en
dc.subject.other Microstructure en
dc.subject.other Ocean structures en
dc.subject.other Standards en
dc.subject.other Strain energy en
dc.subject.other Asymptotic analysis en
dc.title The problem of sharp notch in microstructured solids governed by dipolar gradient elasticity en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10704-010-9523-4 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10704-010-9523-4 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In this paper, we deal with the asymptotic problem of a body of infinite extent with a notch (re-entrant corner) under remotely applied plane-strain or anti-plane shear loadings. The problem is formulated within the framework of the Toupin-Mindlin theory of dipolar gradient elasticity. This generalized continuum theory is appropriate to model the response of materials with microstructure. A linear version of the theory results by considering a linear isotropic expression for the strain-energy density that depends on strain- gradient terms, in addition to the standard strain terms appearing in classical elasticity. Through this formulation, a microstructural material constant c is introduced, in addition to the standard Lamé constants (λ, μ). The faces of the notch are considered to be traction-free and a boundary-layer approach is followed. The boundary value problem is attacked with the asymptotic Knein-Williams technique. Our analysis leads to an eigenvalue problem, which, along with the restriction of a bounded strain energy, provides the asymptotic fields. The cases of a crack and a half-space are analyzed in detail as limit cases of the general notch (infinite wedge) problem. The results show significant departure from the predictions of the standard fracture mechanics. © 2010 Springer Science+Business Media B.V. en
heal.publisher SPRINGER en
heal.journalName International Journal of Fracture en
dc.identifier.doi 10.1007/s10704-010-9523-4 en
dc.identifier.isi ISI:000281681200018 en
dc.identifier.volume 166 en
dc.identifier.issue 1-2 en
dc.identifier.spage 179 en
dc.identifier.epage 201 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής