dc.contributor.author |
Gourgiotis, PA |
en |
dc.contributor.author |
Sifnaiou, MD |
en |
dc.contributor.author |
Georgiadis, HG |
en |
dc.date.accessioned |
2014-03-01T01:34:46Z |
|
dc.date.available |
2014-03-01T01:34:46Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0376-9429 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20850 |
|
dc.subject |
Asymptotics |
en |
dc.subject |
Dipolar gradient elasticity |
en |
dc.subject |
Knein-Williams technique |
en |
dc.subject |
Micro-mechanics |
en |
dc.subject |
Microstructure |
en |
dc.subject |
Notch |
en |
dc.subject |
Re-entrant corner |
en |
dc.subject |
Toupin-Mindlin theory |
en |
dc.subject |
Wedge |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Asymptotics |
en |
dc.subject.other |
Dipolar gradient elasticity |
en |
dc.subject.other |
Mindlin theory |
en |
dc.subject.other |
Notch |
en |
dc.subject.other |
Re-entrant corner |
en |
dc.subject.other |
Wedge |
en |
dc.subject.other |
Williams |
en |
dc.subject.other |
Continuum mechanics |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Elastohydrodynamics |
en |
dc.subject.other |
Fracture mechanics |
en |
dc.subject.other |
Microstructure |
en |
dc.subject.other |
Ocean structures |
en |
dc.subject.other |
Standards |
en |
dc.subject.other |
Strain energy |
en |
dc.subject.other |
Asymptotic analysis |
en |
dc.title |
The problem of sharp notch in microstructured solids governed by dipolar gradient elasticity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10704-010-9523-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10704-010-9523-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper, we deal with the asymptotic problem of a body of infinite extent with a notch (re-entrant corner) under remotely applied plane-strain or anti-plane shear loadings. The problem is formulated within the framework of the Toupin-Mindlin theory of dipolar gradient elasticity. This generalized continuum theory is appropriate to model the response of materials with microstructure. A linear version of the theory results by considering a linear isotropic expression for the strain-energy density that depends on strain- gradient terms, in addition to the standard strain terms appearing in classical elasticity. Through this formulation, a microstructural material constant c is introduced, in addition to the standard Lamé constants (λ, μ). The faces of the notch are considered to be traction-free and a boundary-layer approach is followed. The boundary value problem is attacked with the asymptotic Knein-Williams technique. Our analysis leads to an eigenvalue problem, which, along with the restriction of a bounded strain energy, provides the asymptotic fields. The cases of a crack and a half-space are analyzed in detail as limit cases of the general notch (infinite wedge) problem. The results show significant departure from the predictions of the standard fracture mechanics. © 2010 Springer Science+Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
International Journal of Fracture |
en |
dc.identifier.doi |
10.1007/s10704-010-9523-4 |
en |
dc.identifier.isi |
ISI:000281681200018 |
en |
dc.identifier.volume |
166 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
179 |
en |
dc.identifier.epage |
201 |
en |