dc.contributor.author |
Munoz-Fernandez, GA |
en |
dc.contributor.author |
Sarantopoulos, Y |
en |
dc.contributor.author |
Seoane-Sepulveda, JB |
en |
dc.date.accessioned |
2014-03-01T01:34:46Z |
|
dc.date.available |
2014-03-01T01:34:46Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0002-9939 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20851 |
|
dc.subject |
Plank problems |
en |
dc.subject |
Polarization constants |
en |
dc.subject |
Product of linear functionals |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
POLARIZATION CONSTANTS |
en |
dc.subject.other |
CHEBYSHEV CONSTANTS |
en |
dc.subject.other |
LINEAR FUNCTIONALS |
en |
dc.subject.other |
HILBERT-SPACES |
en |
dc.subject.other |
LOWER BOUNDS |
en |
dc.subject.other |
POLYNOMIALS |
en |
dc.subject.other |
PRODUCTS |
en |
dc.subject.other |
PERMANENTS |
en |
dc.subject.other |
NORMS |
en |
dc.title |
The real plank problem and some applications |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1090/S0002-9939-10-10295-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1090/S0002-9939-10-10295-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
K. Ball has proved the "complex plank problem": if (x(k))(k=1)(n) is a sequence of norm I vectors in a complex Hilbert space (H, (., .)), then there exists a unit vector x for which |< x,x(k)>| >= 1/root n, k = 1,...,n. In general, this result is not true on real Hilbert spaces. However, in special cases we prove that the same result holds true. In general, for some unit vector x we have derived the estimate |< x,x(k)>| >= max{root lambda(1)/n, 1/root lambda(n)n}, where lambda(1) is the smallest and lambda(n) is the largest eigenvalue of the Hermitian matrix A = [(x(j), x(k))], j, k = 1,...,n. We have also improved known estimates for the norms of homogeneous polynomials which are products of linear forms on real Hilbert spaces. |
en |
heal.publisher |
AMER MATHEMATICAL SOC |
en |
heal.journalName |
Proceedings of the American Mathematical Society |
en |
dc.identifier.doi |
10.1090/S0002-9939-10-10295-0 |
en |
dc.identifier.isi |
ISI:000278512900029 |
en |
dc.identifier.volume |
138 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
2521 |
en |
dc.identifier.epage |
2535 |
en |