HEAL DSpace

The real plank problem and some applications

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Munoz-Fernandez, GA en
dc.contributor.author Sarantopoulos, Y en
dc.contributor.author Seoane-Sepulveda, JB en
dc.date.accessioned 2014-03-01T01:34:46Z
dc.date.available 2014-03-01T01:34:46Z
dc.date.issued 2010 en
dc.identifier.issn 0002-9939 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20851
dc.subject Plank problems en
dc.subject Polarization constants en
dc.subject Product of linear functionals en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.subject.other POLARIZATION CONSTANTS en
dc.subject.other CHEBYSHEV CONSTANTS en
dc.subject.other LINEAR FUNCTIONALS en
dc.subject.other HILBERT-SPACES en
dc.subject.other LOWER BOUNDS en
dc.subject.other POLYNOMIALS en
dc.subject.other PRODUCTS en
dc.subject.other PERMANENTS en
dc.subject.other NORMS en
dc.title The real plank problem and some applications en
heal.type journalArticle en
heal.identifier.primary 10.1090/S0002-9939-10-10295-0 en
heal.identifier.secondary http://dx.doi.org/10.1090/S0002-9939-10-10295-0 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract K. Ball has proved the "complex plank problem": if (x(k))(k=1)(n) is a sequence of norm I vectors in a complex Hilbert space (H, (., .)), then there exists a unit vector x for which |< x,x(k)>| >= 1/root n, k = 1,...,n. In general, this result is not true on real Hilbert spaces. However, in special cases we prove that the same result holds true. In general, for some unit vector x we have derived the estimate |< x,x(k)>| >= max{root lambda(1)/n, 1/root lambda(n)n}, where lambda(1) is the smallest and lambda(n) is the largest eigenvalue of the Hermitian matrix A = [(x(j), x(k))], j, k = 1,...,n. We have also improved known estimates for the norms of homogeneous polynomials which are products of linear forms on real Hilbert spaces. en
heal.publisher AMER MATHEMATICAL SOC en
heal.journalName Proceedings of the American Mathematical Society en
dc.identifier.doi 10.1090/S0002-9939-10-10295-0 en
dc.identifier.isi ISI:000278512900029 en
dc.identifier.volume 138 en
dc.identifier.issue 7 en
dc.identifier.spage 2521 en
dc.identifier.epage 2535 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής