HEAL DSpace

Total pressure losses minimization in turbomachinery cascades using the exact Hessian

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zervogiannis, T en
dc.contributor.author Papadimitriou, DI en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:34:48Z
dc.date.available 2014-03-01T01:34:48Z
dc.date.issued 2010 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20862
dc.subject Discrete adjoint en
dc.subject Hessian matrix en
dc.subject Shape optimization en
dc.subject Total pressure losses minimization en
dc.subject Turbomachinery en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Adjoint methods en
dc.subject.other Adjoints en
dc.subject.other Automatic differentiations en
dc.subject.other Blade thickness en
dc.subject.other Constrained optimization problems en
dc.subject.other Design variables en
dc.subject.other Direct differentiation en
dc.subject.other First cycle en
dc.subject.other First-order sensitivity en
dc.subject.other Flow equations en
dc.subject.other Flow turning en
dc.subject.other Hessian matrices en
dc.subject.other Lagrange methods en
dc.subject.other Memory requirements en
dc.subject.other Objective functions en
dc.subject.other Quasi-Newton methods en
dc.subject.other Second-order sensitivity en
dc.subject.other Total pressure en
dc.subject.other Total-pressure loss en
dc.subject.other Cascades (fluid mechanics) en
dc.subject.other Constrained optimization en
dc.subject.other Machine design en
dc.subject.other Matrix algebra en
dc.subject.other Newton-Raphson method en
dc.subject.other Turbomachinery en
dc.subject.other Shape optimization en
dc.title Total pressure losses minimization in turbomachinery cascades using the exact Hessian en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cma.2010.05.014 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cma.2010.05.014 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract A method for the design of turbomachinery cascades with minimum total pressure losses, subject to constraints on the minimum blade thickness and flow turning, is presented. It is based on the Newton-Lagrange method which requires the computation of first- and second-order sensitivities of the objective function and the constraints, with respect to the design variables. The computation of the exact Hessian of the function which expresses the difference in total pressure between the inlet to and the outlet from the cascade, is new in the literature. To compute the Hessian, the direct differentiation of the viscous flow equations is used for the first-order sensitivities of the functional and the flow-related constraints, followed by the discrete adjoint method. Since the objective function is defined along boundaries other than those controlled by the design variables, it is challenging to investigate the significance of all terms comprising the exact second-order sensitivity expressions. All these terms were temporarily computed using automatic differentiation and those which proved to be significant are hand-differentiated to minimize CPU cost and memory requirements. Insignificant terms are eliminated, giving rise to the so-called "exact" Hessian matrix. An "exactly" initialized quasi-Newton method was also programmed and tested. In the latter, at the first cycle, the exact gradients and Hessians are computed and used; during the subsequent optimization cycles, the discrete adjoint method provides the exact gradient whereas the Hessian is updated as in quasi-Newton methods. The comparison of the efficiency of the aforementioned methods depends on the number of design variables used; the "exactly" initialized quasi-Newton method constantly outperforms its conventional variant in terms of CPU cost, particularly in non-convex and/or constrained optimization problems. (C) 2010 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/j.cma.2010.05.014 en
dc.identifier.isi ISI:000284676500008 en
dc.identifier.volume 199 en
dc.identifier.issue 41-44 en
dc.identifier.spage 2697 en
dc.identifier.epage 2708 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής