dc.contributor.author |
Filippakis, ME |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:34:48Z |
|
dc.date.available |
2014-03-01T01:34:48Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0003-6811 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20870 |
|
dc.subject |
Concave and convex non-linear terms |
en |
dc.subject |
Ekeland variational principle |
en |
dc.subject |
Generalized subdifferential |
en |
dc.subject |
Non-smooth critical point theory |
en |
dc.subject |
p-laplacian |
en |
dc.subject |
Positive solutions |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
LINEAR ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
LOCAL MINIMIZERS |
en |
dc.subject.other |
MULTIPLICITY |
en |
dc.title |
Two positive solutions for p-laplacian equations with convex and concave non-linearities and a non-smooth potential |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/00036810802713859 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/00036810802713859 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We consider a non-linear elliptic problem driven by the p-Laplacian and a non-smooth potential (hemivariational inequality). We assume that the non-linearity involves the combined effects of both concave (i.e. p-sublinear) and convex (i.e. p-superlinear) terms. We show the existence of two positive solutions, using non-smooth critical point theory and the Ekeland variational principle. © 2010 Taylor & Francis. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
Applicable Analysis |
en |
dc.identifier.doi |
10.1080/00036810802713859 |
en |
dc.identifier.isi |
ISI:000274423100005 |
en |
dc.identifier.volume |
89 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
193 |
en |
dc.identifier.epage |
206 |
en |