HEAL DSpace

Uncertainty management of a hydrogeological data set in a greek lignite basin, using BME

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Modis, K en
dc.contributor.author Vatalis, K en
dc.contributor.author Papantonopoulos, G en
dc.contributor.author Sachanidis, C en
dc.date.accessioned 2014-03-01T01:34:48Z
dc.date.available 2014-03-01T01:34:48Z
dc.date.issued 2010 en
dc.identifier.issn 1436-3240 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20871
dc.subject BME en
dc.subject Geostatistics en
dc.subject Risk assessment en
dc.subject Uncertain measurements en
dc.subject Water pollution en
dc.subject.classification Engineering, Environmental en
dc.subject.classification Engineering, Civil en
dc.subject.classification Environmental Sciences en
dc.subject.classification Statistics & Probability en
dc.subject.classification Water Resources en
dc.subject.other Bayesian maximum entropies en
dc.subject.other BME en
dc.subject.other Chemical pollutants en
dc.subject.other Conventional measurements en
dc.subject.other Data sets en
dc.subject.other Essential component en
dc.subject.other Geo-statistics en
dc.subject.other Hydrogeological en
dc.subject.other Interval data en
dc.subject.other Irregular sampling en
dc.subject.other Life span en
dc.subject.other Manganese concentration en
dc.subject.other New York en
dc.subject.other Open-cast mining en
dc.subject.other Oxford University en
dc.subject.other Posterior distributions en
dc.subject.other Seasonal variation en
dc.subject.other Single point en
dc.subject.other Spatial analysis en
dc.subject.other Spatio-temporal processing en
dc.subject.other Spatiotemporal distributions en
dc.subject.other Temporal trends en
dc.subject.other Uncertain measurements en
dc.subject.other Uncertainty management en
dc.subject.other Uncertainty sources en
dc.subject.other Water contamination en
dc.subject.other Ammonium compounds en
dc.subject.other Boreholes en
dc.subject.other Data processing en
dc.subject.other Groundwater en
dc.subject.other Groundwater pollution en
dc.subject.other Lignite en
dc.subject.other Manganese en
dc.subject.other Oil spills en
dc.subject.other Risk assessment en
dc.subject.other Risk management en
dc.subject.other Surface topography en
dc.subject.other Uncertainty analysis en
dc.subject.other data processing en
dc.subject.other geostatistics en
dc.subject.other hydrogeology en
dc.subject.other karst en
dc.subject.other lignite en
dc.subject.other maximum entropy analysis en
dc.subject.other opencast mining en
dc.subject.other risk assessment en
dc.subject.other seasonal variation en
dc.subject.other spatial analysis en
dc.subject.other underground storage en
dc.subject.other water pollution en
dc.subject.other Greece en
dc.title Uncertainty management of a hydrogeological data set in a greek lignite basin, using BME en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00477-008-0298-3 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00477-008-0298-3 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract The occurrence of chemical pollutants in ground water is an issue of considerable interest. In the case of Ptolemais lignite opencast mining area in Greece, ammonium, nitrites, nitrates, iron total and total manganese concentrations, as well as various other elements have been monitored since the early 2000s through a borehole network. The continuous, though, alteration of the surface topography due to the intensive mining works, limits the life span of the water boreholes and results to irregular spatiotemporal distribution of the samples. Regarding the problem of mapping the water contamination, the coarse and irregular sampling pattern, combined with absence of seasonal variations and temporal trends, does not facilitate spatiotemporal processing of the data. On the other hand, a mere spatial analysis requires the attribution of the whole set of monitored values for each borehole, to a single point in space. The objective of this work is to develop a methodology to cope with the problem of uncertainty caused due to the above assumptions. The proposed solution is based on the consideration of interval data. The Bayesian maximum entropy (BME) theory (Christakos, Modern spatiotemporal geostatistics. Oxford University Press, New York, 2000) is an essential component of this methodology. The main reason for this is that it is the only theory in the framework of Geostatistics that offers powerful tools to merge the uncertainty sources with the rest of conventional measurements. This ability is a result of its generalized view on the problem of estimation that focuses on the knowledge of a natural variable and not the variable itself. The application of the proposed methodology led to sharper posterior distributions, an indication of the increased certainty in estimated values which is induced by the broader utilization of data. © Springer-Verlag 2008. en
heal.publisher SPRINGER en
heal.journalName Stochastic Environmental Research and Risk Assessment en
dc.identifier.doi 10.1007/s00477-008-0298-3 en
dc.identifier.isi ISI:000273329300005 en
dc.identifier.volume 24 en
dc.identifier.issue 1 en
dc.identifier.spage 47 en
dc.identifier.epage 56 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής