HEAL DSpace

Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsou, E en
dc.contributor.author Malamis, S en
dc.contributor.author Haralambous, KJ en
dc.contributor.author Loizidou, M en
dc.date.accessioned 2014-03-01T01:34:49Z
dc.date.available 2014-03-01T01:34:49Z
dc.date.issued 2010 en
dc.identifier.issn 0376-7388 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20873
dc.subject Adsorption en
dc.subject Aluminosilicate minerals en
dc.subject Nickel removal en
dc.subject Sludge en
dc.subject Ultrafiltration membranes en
dc.subject.classification Engineering, Chemical en
dc.subject.classification Polymer Science en
dc.subject.other Activated sludge en
dc.subject.other Aluminosilicate minerals en
dc.subject.other Aqueous solutions en
dc.subject.other Chemical precipitation en
dc.subject.other Concentration of en
dc.subject.other Contact time en
dc.subject.other Effluent reuse en
dc.subject.other Equilibrium isotherms en
dc.subject.other Film diffusion en
dc.subject.other Final effluents en
dc.subject.other Freundlich models en
dc.subject.other High temperature en
dc.subject.other Industrial wastewaters en
dc.subject.other Initial concentration en
dc.subject.other Intra-particle diffusion en
dc.subject.other Langmuir models en
dc.subject.other Nickel ions en
dc.subject.other Nickel removal en
dc.subject.other pH value en
dc.subject.other Removal efficiencies en
dc.subject.other Sludge en
dc.subject.other Sludge flocs en
dc.subject.other UF membranes en
dc.subject.other Ultra-filtration membranes en
dc.subject.other Aluminosilicates en
dc.subject.other Bentonite en
dc.subject.other Biosorption en
dc.subject.other Clay minerals en
dc.subject.other Concentration (process) en
dc.subject.other Effluents en
dc.subject.other Environmental Protection Agency en
dc.subject.other Membranes en
dc.subject.other Metal ions en
dc.subject.other Minerals en
dc.subject.other Nickel en
dc.subject.other Nickel alloys en
dc.subject.other Precipitation (chemical) en
dc.subject.other Removal en
dc.subject.other Silicate minerals en
dc.subject.other Solutions en
dc.subject.other Ultrafiltration en
dc.subject.other Wastewater en
dc.subject.other Water filtration en
dc.subject.other Adsorption en
dc.subject.other aluminum silicate en
dc.subject.other bentonite en
dc.subject.other nickel en
dc.subject.other vermiculite en
dc.subject.other zeolite en
dc.subject.other activated sludge en
dc.subject.other adsorption kinetics en
dc.subject.other aqueous solution en
dc.subject.other article en
dc.subject.other concentration (parameters) en
dc.subject.other controlled study en
dc.subject.other high temperature procedures en
dc.subject.other industrial waste en
dc.subject.other Langmuir Blodgett film en
dc.subject.other mathematical model en
dc.subject.other pH en
dc.subject.other precipitation en
dc.subject.other priority journal en
dc.subject.other sludge disposal en
dc.subject.other ultrafiltration en
dc.subject.other waste component removal en
dc.subject.other waste water management en
dc.title Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.memsci.2010.05.020 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.memsci.2010.05.020 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract This work investigated the removal of nickel ions from aqueous solutions and activated sludge by employing ultrafiltration (UF) membranes together with natural aluminosilicate minerals (bentonite, zeolite and vermiculite). The performance of the system was examined with respect to different parameters including the membrane nominal pore size, the temperature and pH of aqueous solution and sludge, the mineral type and concentration, the sludge MLSS concentration, the Ni(II) initial concentration and the metal-mineral contact time. The experiments were conducted in a batch ultrafiltration unit with constant initial Ni(II) concentration of 320 mg/l. The addition of 15 g/l of bentonite and 15 g/l of vermiculite at pH 6 resulted in Ni(II) removal efficiencies of 65.3% and 80.0% respectively due to sorption induced by minerals and sludge. The addition of 10 g/l vermiculite at pH 8 resulted in the production of a final effluent with Ni(II) concentration that met the EPA short-term effluent reuse limit of 2.0 mg/l. The processes involved in the removal of nickel consisted of biosorption onto sludge flocs, adsorption onto the mineral, retention of insoluble metal ions by the UF membranes and chemical precipitation. High temperatures, sludge MLSS concentrations and pH values favoured the nickel removal process. Film diffusion was important at the early stages of the process, while intraparticle diffusion was dominant at the later stages. The equilibrium isotherms for the minerals followed the Langmuir model, while sludge followed the Freundlich model. (C) 2010 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Membrane Science en
dc.identifier.doi 10.1016/j.memsci.2010.05.020 en
dc.identifier.isi ISI:000280311500028 en
dc.identifier.volume 360 en
dc.identifier.issue 1-2 en
dc.identifier.spage 234 en
dc.identifier.epage 249 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής