HEAL DSpace

Variable selection in nonlinear modeling based on RBF networks and evolutionary computation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Patrinos, P en
dc.contributor.author Alexandridis, A en
dc.contributor.author Ninos, K en
dc.contributor.author Sarimveis, H en
dc.date.accessioned 2014-03-01T01:34:50Z
dc.date.available 2014-03-01T01:34:50Z
dc.date.issued 2010 en
dc.identifier.issn 0129-0657 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20885
dc.subject evolutionary computation en
dc.subject gas furnace data en
dc.subject Mackey glass data en
dc.subject neural networks en
dc.subject quantitative structure activity relationship (QSAR) en
dc.subject radial basis functions en
dc.subject Variable selection en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Evolutionary computations en
dc.subject.other Mackey glass data en
dc.subject.other Quantitative structure-activity relationships en
dc.subject.other Radial basis functions en
dc.subject.other Variable selection en
dc.subject.other Calculations en
dc.subject.other Function evaluation en
dc.subject.other Furnaces en
dc.subject.other Gas furnaces en
dc.subject.other Genetic algorithms en
dc.subject.other Glass en
dc.subject.other Image segmentation en
dc.subject.other Neural networks en
dc.subject.other Parameter estimation en
dc.subject.other Tuning en
dc.subject.other Radial basis function networks en
dc.title Variable selection in nonlinear modeling based on RBF networks and evolutionary computation en
heal.type journalArticle en
heal.identifier.primary 10.1142/S0129065710002474 en
heal.identifier.secondary http://dx.doi.org/10.1142/S0129065710002474 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In this paper a novel variable selection method based on Radial Basis Function (RBF) neural networks and genetic algorithms is presented. The fuzzy means algorithm is utilized as the training method for the RBF networks, due to its inherent speed, the deterministic approach of selecting the hidden node centers and the fact that it involves only a single tuning parameter. The trade-off between the accuracy and parsimony of the produced model is handled by using Final Prediction Error criterion, based on the RBF training and validation errors, as a fitness function of the proposed genetic algorithm. The tuning parameter required by the fuzzy means algorithm is treated as a free variable by the genetic algorithm. The proposed method was tested in benchmark data sets stemming from the scientific communities of time-series prediction and medicinal chemistry and produced promising results. © 2010 World Scientific Publishing Company. en
heal.publisher WORLD SCIENTIFIC PUBL CO PTE LTD en
heal.journalName International Journal of Neural Systems en
dc.identifier.doi 10.1142/S0129065710002474 en
dc.identifier.isi ISI:000284649300002 en
dc.identifier.volume 20 en
dc.identifier.issue 5 en
dc.identifier.spage 365 en
dc.identifier.epage 379 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής