HEAL DSpace

Vehicle logo recognition using a sift-based enhanced matching scheme

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Psyllos, AP en
dc.contributor.author Anagnostopoulos, C-NE en
dc.contributor.author Kayafas, E en
dc.date.accessioned 2014-03-01T01:34:50Z
dc.date.available 2014-03-01T01:34:50Z
dc.date.issued 2010 en
dc.identifier.issn 1524-9050 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20886
dc.subject Image matching en
dc.subject Manufacturer recognition en
dc.subject Vehicles en
dc.subject.classification Engineering, Civil en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Transportation Science & Technology en
dc.subject.other Fast processing time en
dc.subject.other Feature matching en
dc.subject.other In-vehicle en
dc.subject.other Manufacturer recognition en
dc.subject.other Matching scheme en
dc.subject.other Real-time application en
dc.subject.other Recognition accuracy en
dc.subject.other Recognition rates en
dc.subject.other Scale invariant feature transforms en
dc.subject.other Training sets en
dc.subject.other Vehicle logo recognition en
dc.subject.other Vehicle manufacturers en
dc.subject.other Image matching en
dc.subject.other Vehicles en
dc.title Vehicle logo recognition using a sift-based enhanced matching scheme en
heal.type journalArticle en
heal.identifier.primary 10.1109/TITS.2010.2042714 en
heal.identifier.secondary http://dx.doi.org/10.1109/TITS.2010.2042714 en
heal.identifier.secondary 5419948 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In this paper, a new algorithm for vehicle logo recognition on the basis of an enhanced scale-invariant feature transform (SIFT)-based feature-matching scheme is proposed. This algorithm is assessed on a set of 1200 logo images that belong to ten distinctive vehicle manufacturers. A series of experiments are conducted, splitting the 1200 images to a training set and a testing set, respectively. It is shown that the enhanced matching approach proposed in this paper boosts the recognition accuracy compared with the standard SIFT-based feature-matching method. The reported results indicate a high recognition rate in vehicle logos and a fast processing time, making it suitable for real-time applications. © 2006 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Intelligent Transportation Systems en
dc.identifier.doi 10.1109/TITS.2010.2042714 en
dc.identifier.isi ISI:000278538600009 en
dc.identifier.volume 11 en
dc.identifier.issue 2 en
dc.identifier.spage 322 en
dc.identifier.epage 328 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής