dc.contributor.author |
Psyllos, AP |
en |
dc.contributor.author |
Anagnostopoulos, C-NE |
en |
dc.contributor.author |
Kayafas, E |
en |
dc.date.accessioned |
2014-03-01T01:34:50Z |
|
dc.date.available |
2014-03-01T01:34:50Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1524-9050 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20886 |
|
dc.subject |
Image matching |
en |
dc.subject |
Manufacturer recognition |
en |
dc.subject |
Vehicles |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Transportation Science & Technology |
en |
dc.subject.other |
Fast processing time |
en |
dc.subject.other |
Feature matching |
en |
dc.subject.other |
In-vehicle |
en |
dc.subject.other |
Manufacturer recognition |
en |
dc.subject.other |
Matching scheme |
en |
dc.subject.other |
Real-time application |
en |
dc.subject.other |
Recognition accuracy |
en |
dc.subject.other |
Recognition rates |
en |
dc.subject.other |
Scale invariant feature transforms |
en |
dc.subject.other |
Training sets |
en |
dc.subject.other |
Vehicle logo recognition |
en |
dc.subject.other |
Vehicle manufacturers |
en |
dc.subject.other |
Image matching |
en |
dc.subject.other |
Vehicles |
en |
dc.title |
Vehicle logo recognition using a sift-based enhanced matching scheme |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TITS.2010.2042714 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TITS.2010.2042714 |
en |
heal.identifier.secondary |
5419948 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper, a new algorithm for vehicle logo recognition on the basis of an enhanced scale-invariant feature transform (SIFT)-based feature-matching scheme is proposed. This algorithm is assessed on a set of 1200 logo images that belong to ten distinctive vehicle manufacturers. A series of experiments are conducted, splitting the 1200 images to a training set and a testing set, respectively. It is shown that the enhanced matching approach proposed in this paper boosts the recognition accuracy compared with the standard SIFT-based feature-matching method. The reported results indicate a high recognition rate in vehicle logos and a fast processing time, making it suitable for real-time applications. © 2006 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Intelligent Transportation Systems |
en |
dc.identifier.doi |
10.1109/TITS.2010.2042714 |
en |
dc.identifier.isi |
ISI:000278538600009 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
322 |
en |
dc.identifier.epage |
328 |
en |