dc.contributor.author |
Evangelaras, H |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.contributor.author |
Lappas, E |
en |
dc.date.accessioned |
2014-03-01T01:34:51Z |
|
dc.date.available |
2014-03-01T01:34:51Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0315-3681 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20896 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-79952688958&partnerID=40&md5=4372809e14404536d6d31d8e61471e8a |
en |
dc.subject |
Construction algorithm |
en |
dc.subject |
Gwpk profile |
en |
dc.subject |
Isomorphism |
en |
dc.subject |
Orthogonal arrays |
en |
dc.subject |
Projection properties |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
FACTORIAL-DESIGNS |
en |
dc.subject.other |
ABERRATION |
en |
dc.subject.other |
CLASSIFICATION |
en |
dc.subject.other |
ALGORITHM |
en |
dc.title |
27-run nonisomorphic three level orthogonal arrays: Identification, evaluation and projection properties |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this paper we construct all possible three level orthogonal arrays with 27 runs and 3 <= q <= 13 columns and present those that are nonisomorphic. A discussion on the novelty and the superiority of many of the designs found in terms of isomorphism and generalized minimum aberration is made. The GWP(k) profile criterion is introduced to evaluate nonisomoprhic arrays as screening designs. |
en |
heal.publisher |
UTIL MATH PUBL INC |
en |
heal.journalName |
Utilitas Mathematica |
en |
dc.identifier.isi |
ISI:000287956500007 |
en |
dc.identifier.volume |
84 |
en |
dc.identifier.spage |
75 |
en |
dc.identifier.epage |
87 |
en |