dc.contributor.author |
Mandellos, NA |
en |
dc.contributor.author |
Keramitsoglou, I |
en |
dc.contributor.author |
Kiranoudis, CT |
en |
dc.date.accessioned |
2014-03-01T01:34:51Z |
|
dc.date.available |
2014-03-01T01:34:51Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0957-4174 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20899 |
|
dc.subject |
Background maintenance |
en |
dc.subject |
Background reconstruction |
en |
dc.subject |
Background subtraction |
en |
dc.subject |
Background update |
en |
dc.subject |
Computer vision |
en |
dc.subject |
Tracking |
en |
dc.subject |
Traffic surveillance |
en |
dc.subject |
Vehicle detection |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
Background maintenance |
en |
dc.subject.other |
Background reconstruction |
en |
dc.subject.other |
Background subtraction |
en |
dc.subject.other |
Background update |
en |
dc.subject.other |
Tracking |
en |
dc.subject.other |
Traffic surveillance |
en |
dc.subject.other |
Vehicle detection |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Maintenance |
en |
dc.subject.other |
Monitoring |
en |
dc.subject.other |
Motor transportation |
en |
dc.subject.other |
Traffic congestion |
en |
dc.subject.other |
Vehicles |
en |
dc.subject.other |
Computer vision |
en |
dc.title |
A background subtraction algorithm for detecting and tracking vehicles |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.eswa.2010.07.083 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.eswa.2010.07.083 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
An innovative system for detecting and extracting vehicles in traffic surveillance scenes is presented. This system involves locating moving objects present in complex road scenes by implementing an advanced background subtraction methodology. The innovation concerns a histogram-based filtering procedure, which collects scatter background information carried in a series of frames, at pixel level, generating reliable instances of the actual background. The proposed algorithm reconstructs a background instance on demand under any traffic conditions. The background reconstruction algorithm demonstrated a rather robust performance in various operating conditions including unstable lighting, different view-angles and congestion. (C) 2010 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Expert Systems with Applications |
en |
dc.identifier.doi |
10.1016/j.eswa.2010.07.083 |
en |
dc.identifier.isi |
ISI:000284863200039 |
en |
dc.identifier.volume |
38 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
1619 |
en |
dc.identifier.epage |
1631 |
en |