HEAL DSpace

A BEM-based domain meshless method for the analysis of Mindlin plates with general boundary conditions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chinnaboon, B en
dc.contributor.author Chucheepsakul, S en
dc.contributor.author Katsikadelis, JT en
dc.date.accessioned 2014-03-01T01:34:51Z
dc.date.available 2014-03-01T01:34:51Z
dc.date.issued 2011 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20901
dc.subject Analog equation en
dc.subject Boundary Element Method en
dc.subject Meshless en
dc.subject Mindlin en
dc.subject Radial basis functions en
dc.subject Thick plates en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Analog equation en
dc.subject.other Meshless en
dc.subject.other Mindlin en
dc.subject.other Radial basis functions en
dc.subject.other Thick plate en
dc.subject.other Boundary conditions en
dc.subject.other Boundary integral equations en
dc.subject.other Mindlin plates en
dc.subject.other Numerical methods en
dc.subject.other Poisson equation en
dc.subject.other Radial basis function networks en
dc.subject.other Boundary element method en
dc.title A BEM-based domain meshless method for the analysis of Mindlin plates with general boundary conditions en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cma.2010.12.014 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cma.2010.12.014 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract In this paper, a BEM-based domain meshless method is developed for the analysis of moderately thick plates modeled by Mindlin's theory which permits the satisfaction of three physical conditions along the plate boundary. The presented method is achieved using the concept of the analog equation of Katsikadelis. According to this concept, the original governing differential equations are replaced by three uncoupled Poisson's equations with fictitious sources under the same boundary conditions. The fictitious sources are established using a technique based on BEM and approximated by radial basis functions series. The solution of the actual problem is obtained from the known integral representation of the potential problem. Thus, the kernels of the boundary integral equations are conveniently established and evaluated. The presented method has the advantages of the BEM in the sense that the discretization and integration are performed only on the boundary, and consequently Mindlin plates with general boundary conditions can be analyzed without difficulty. To illustrate the effectiveness, applicability as well as accuracy of the method, numerical results of various example problems are presented. (C) 2010 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/j.cma.2010.12.014 en
dc.identifier.isi ISI:000288884900004 en
dc.identifier.volume 200 en
dc.identifier.issue 13-16 en
dc.identifier.spage 1379 en
dc.identifier.epage 1388 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής