dc.contributor.author |
Kyritsi, ST |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:34:51Z |
|
dc.date.available |
2014-03-01T01:34:51Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0096-3003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20902 |
|
dc.subject |
Bifurcation |
en |
dc.subject |
Nonlinear maximum principle |
en |
dc.subject |
Nonlinear regularity |
en |
dc.subject |
p-Logistic equation |
en |
dc.subject |
Unique positive solution |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Bifurcation |
en |
dc.subject.other |
Nonlinear maximum principle |
en |
dc.subject.other |
Nonlinear regularity |
en |
dc.subject.other |
p-Logistic equation |
en |
dc.subject.other |
Unique positive solution |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Maximum principle |
en |
dc.subject.other |
Variational techniques |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.title |
A bifurcation theorem for the p-logistic equation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.amc.2011.02.056 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.amc.2011.02.056 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We consider a p-logistic equation with an equidiffusive reaction. Using variational methods and truncation techniques, we show that there is a critical parameter value lambda* > 0 such that for lambda > lambda* the problem has a unique positive smooth solution, and for lambda is an element of (0, lambda*] the problem has no positive solution. (C) 2011 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematics and Computation |
en |
dc.identifier.doi |
10.1016/j.amc.2011.02.056 |
en |
dc.identifier.isi |
ISI:000288851600018 |
en |
dc.identifier.volume |
217 |
en |
dc.identifier.issue |
18 |
en |
dc.identifier.spage |
7504 |
en |
dc.identifier.epage |
7508 |
en |