dc.contributor.author |
Chondros, MK |
en |
dc.contributor.author |
Koutsourelakis, IG |
en |
dc.contributor.author |
Memos, CD |
en |
dc.date.accessioned |
2014-03-01T01:34:51Z |
|
dc.date.available |
2014-03-01T01:34:51Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0022-1686 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20903 |
|
dc.subject |
Boussinesq equation |
en |
dc.subject |
eddy viscosity |
en |
dc.subject |
MIKE21 |
en |
dc.subject |
numerical modelling |
en |
dc.subject |
surface roller |
en |
dc.subject |
wave-breaking |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Water Resources |
en |
dc.subject.other |
Boussinesq equations |
en |
dc.subject.other |
Eddy viscosity |
en |
dc.subject.other |
MIKE-21 |
en |
dc.subject.other |
Numerical modelling |
en |
dc.subject.other |
surface roller |
en |
dc.subject.other |
Wavebreaking |
en |
dc.subject.other |
Coastal engineering |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Dispersion (waves) |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Water waves |
en |
dc.subject.other |
Boussinesq equation |
en |
dc.subject.other |
dispersion |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
random wave |
en |
dc.subject.other |
shallow water |
en |
dc.subject.other |
water depth |
en |
dc.subject.other |
wave breaking |
en |
dc.subject.other |
wave modeling |
en |
dc.title |
A Boussinesq-type model incorporating random wave-breaking |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/00221686.2011.571817 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/00221686.2011.571817 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
A recent Boussinesq-type model is herein modified to account for breaking waves in shallow water. The model is based on a system of equations in terms of surface elevation and depth-averaged horizontal velocities, in two horizontal dimensions for fully dispersive and weakly nonlinear random waves over any finite water depth. The formulation involves five terms in each momentum equation, including the classical shallow-water equation terms, and only one frequency dispersion term. This work extends the model by including depth-induced wave-breaking in one horizontal dimension, based on the eddy viscosity and surface roller criteria. The modified model was applied to simulate the propagation and wave-breaking of regular and random waves using a simple explicit finite difference scheme. The simulation results were compared with experimental data and with results from one of the most widespread commercial Boussinesq wave models, indicating good agreement in most cases. © 2011 Copyright International Association for Hydro-Environment Engineering and Research. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
Journal of Hydraulic Research |
en |
dc.identifier.doi |
10.1080/00221686.2011.571817 |
en |
dc.identifier.isi |
ISI:000294213700011 |
en |
dc.identifier.volume |
49 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
529 |
en |
dc.identifier.epage |
538 |
en |