dc.contributor.author |
Belibassakis, KA |
en |
dc.contributor.author |
Gerostathis, TP |
en |
dc.contributor.author |
Athanassoulis, GA |
en |
dc.date.accessioned |
2014-03-01T01:34:52Z |
|
dc.date.available |
2014-03-01T01:34:52Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0141-1187 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20907 |
|
dc.subject |
Coupled modes |
en |
dc.subject |
Wave-current-seabed interaction |
en |
dc.subject.classification |
Engineering, Ocean |
en |
dc.subject.classification |
Oceanography |
en |
dc.subject.other |
Analytical structure |
en |
dc.subject.other |
Bottom boundary conditions |
en |
dc.subject.other |
Bottom topography |
en |
dc.subject.other |
Coupled mode |
en |
dc.subject.other |
Coupled systems |
en |
dc.subject.other |
Evanescent mode |
en |
dc.subject.other |
Finite difference |
en |
dc.subject.other |
Free surfaces |
en |
dc.subject.other |
Horizontal planes |
en |
dc.subject.other |
Interaction problems |
en |
dc.subject.other |
Modified mild-slope equations |
en |
dc.subject.other |
Non-homogeneous |
en |
dc.subject.other |
Nonlinear waves |
en |
dc.subject.other |
One-equation model |
en |
dc.subject.other |
Propagating mode |
en |
dc.subject.other |
Scattered waves |
en |
dc.subject.other |
Second orders |
en |
dc.subject.other |
Steady current |
en |
dc.subject.other |
Test case |
en |
dc.subject.other |
Variable bathymetry |
en |
dc.subject.other |
Variational principles |
en |
dc.subject.other |
Vertical distributions |
en |
dc.subject.other |
Vertical modes |
en |
dc.subject.other |
Water wave scattering |
en |
dc.subject.other |
Wave current interaction |
en |
dc.subject.other |
Wave potentials |
en |
dc.subject.other |
Wave scattering |
en |
dc.subject.other |
Wave-current-seabed interaction |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Topography |
en |
dc.subject.other |
Variational techniques |
en |
dc.subject.other |
Water waves |
en |
dc.subject.other |
Electromagnetic wave scattering |
en |
dc.subject.other |
bottom topography |
en |
dc.subject.other |
boundary condition |
en |
dc.subject.other |
seafloor |
en |
dc.subject.other |
water wave |
en |
dc.subject.other |
wave modeling |
en |
dc.subject.other |
wave scattering |
en |
dc.subject.other |
wave-current interaction |
en |
dc.title |
A coupled-mode model for water wave scattering by horizontal, non-homogeneous current in general bottom topography |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.apor.2011.05.004 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.apor.2011.05.004 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
A coupled-mode model is developed for treating the wave-current-seabed interaction problem, with application to wave scattering by non-homogeneous, steady current over general bottom topography. The vertical distribution of the scattered wave potential is represented by a series of local vertical modes containing the propagating mode and all evanescent modes, plus additional terms accounting for the satisfaction of the free-surface and bottom boundary conditions. Using the above representation, in conjunction with unconstrained variational principle, an improved coupled system of differential equations on the horizontal plane, with respect to the modal amplitudes, is derived. In the case of small-amplitude waves, a linearised version of the above coupled-mode system is obtained, generalizing previous results by Athanassoulis and Belibassakis [J Fluid Mech 1999;389:275-301] for the propagation of small-amplitude water waves over variable bathymetry regions. Keeping only the propagating mode in the vertical expansion of the wave potential, the present system reduces to an one-equation model, that is shown to be compatible with mild-slope model concerning wave-current interaction over slowly varying topography, and in the case of no current it exactly reduces to the modified mild-slope equation. The present coupled-mode system is discretized on the horizontal plane by using second-order finite differences and numerically solved by iterations. Results are presented for various representative test cases demonstrating the usefulness of the model, as well as the importance of the first evanescent modes and the additional sloping-bottom mode when the bottom slope is not negligible. The analytical structure of the present model facilitates its extension to fully non-linear waves, and to wave scattering by currents with more general structure. (C) 2011 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Applied Ocean Research |
en |
dc.identifier.doi |
10.1016/j.apor.2011.05.004 |
en |
dc.identifier.isi |
ISI:000295994300013 |
en |
dc.identifier.volume |
33 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
384 |
en |
dc.identifier.epage |
397 |
en |