dc.contributor.author |
Patrinos, P |
en |
dc.contributor.author |
Sopasakis, P |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.date.accessioned |
2014-03-01T01:34:53Z |
|
dc.date.available |
2014-03-01T01:34:53Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0005-1098 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20917 |
|
dc.subject |
Large-scale systems |
en |
dc.subject |
Model predictive control |
en |
dc.subject |
Online optimization |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Active sets |
en |
dc.subject.other |
Average running time |
en |
dc.subject.other |
Bench-mark problems |
en |
dc.subject.other |
Constrained linear systems |
en |
dc.subject.other |
Crude distillation units |
en |
dc.subject.other |
Interior point algorithm |
en |
dc.subject.other |
Large-scale problem |
en |
dc.subject.other |
Line searches |
en |
dc.subject.other |
Merit function |
en |
dc.subject.other |
Online optimization |
en |
dc.subject.other |
Orders of magnitude |
en |
dc.subject.other |
Piecewise affines |
en |
dc.subject.other |
Piecewise smooth |
en |
dc.subject.other |
QP solvers |
en |
dc.subject.other |
Quadratic programs |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Distillation |
en |
dc.subject.other |
Distillation equipment |
en |
dc.subject.other |
Linear systems |
en |
dc.subject.other |
Newton-Raphson method |
en |
dc.subject.other |
Predictive control systems |
en |
dc.subject.other |
Quadratic programming |
en |
dc.subject.other |
Model predictive control |
en |
dc.title |
A global piecewise smooth Newton method for fast large-scale model predictive control |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.automatica.2011.05.024 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.automatica.2011.05.024 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this paper, the strictly convex quadratic program (QP) arising in model predictive control (MPC) for constrained linear systems is reformulated as a system of piecewise affine equations. A regularized piecewise smooth Newton method with exact line search on a convex, differentiable, piecewise-quadratic merit function is proposed for the solution of the reformulated problem. The algorithm has considerable merits when applied to MPC over standard active set or interior point algorithms. Its performance is tested and compared against state-of-the-art QP solvers on a series of benchmark problems. The proposed algorithm is orders of magnitudes faster, especially for large-scale problems and long horizons. For example, for the challenging crude distillation unit model of Pannocchia, Rawlings, and Wright (2007) with 252 states, 32 inputs, and 90 outputs, the average running time of the proposed approach is 1.57 ms. (C) 2011 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Automatica |
en |
dc.identifier.doi |
10.1016/j.automatica.2011.05.024 |
en |
dc.identifier.isi |
ISI:000294877400020 |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
2016 |
en |
dc.identifier.epage |
2022 |
en |