dc.contributor.author |
Plevris, V |
en |
dc.contributor.author |
Papadrakakis, M |
en |
dc.date.accessioned |
2014-03-01T01:34:53Z |
|
dc.date.available |
2014-03-01T01:34:53Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1093-9687 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20923 |
|
dc.subject |
Particle Swarm |
en |
dc.subject |
Structure Optimization |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Construction & Building Technology |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Basic concepts |
en |
dc.subject.other |
Best estimates |
en |
dc.subject.other |
Bounded rationality |
en |
dc.subject.other |
Constraint-handling techniques |
en |
dc.subject.other |
Decentralized decision making |
en |
dc.subject.other |
Design spaces |
en |
dc.subject.other |
Fast convergence |
en |
dc.subject.other |
Global optimization problems |
en |
dc.subject.other |
Global optimum |
en |
dc.subject.other |
Gradient algorithm |
en |
dc.subject.other |
Gradient based |
en |
dc.subject.other |
Gradient informations |
en |
dc.subject.other |
Hybrid algorithms |
en |
dc.subject.other |
Hybrid particles |
en |
dc.subject.other |
Nonconvex |
en |
dc.subject.other |
Numerical results |
en |
dc.subject.other |
Optimal solutions |
en |
dc.subject.other |
Optimization algorithms |
en |
dc.subject.other |
Optimizers |
en |
dc.subject.other |
Optimum structural design |
en |
dc.subject.other |
PSO algorithms |
en |
dc.subject.other |
Quasi-Newton |
en |
dc.subject.other |
Sequential quadratic programming method |
en |
dc.subject.other |
Setting parameters |
en |
dc.subject.other |
Structural optimization problems |
en |
dc.subject.other |
Weight update |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Decision making |
en |
dc.subject.other |
Global optimization |
en |
dc.subject.other |
Gradient methods |
en |
dc.subject.other |
Quadratic programming |
en |
dc.subject.other |
Shape optimization |
en |
dc.subject.other |
Structural design |
en |
dc.subject.other |
Structural optimization |
en |
dc.subject.other |
Particle swarm optimization (PSO) |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
benchmarking |
en |
dc.subject.other |
computer aided design |
en |
dc.subject.other |
decision analysis |
en |
dc.subject.other |
gradient analysis |
en |
dc.subject.other |
optimization |
en |
dc.subject.other |
parameterization |
en |
dc.subject.other |
performance assessment |
en |
dc.subject.other |
structural analysis |
en |
dc.title |
A Hybrid Particle Swarm-Gradient Algorithm for Global Structural Optimization |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1111/j.1467-8667.2010.00664.x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1111/j.1467-8667.2010.00664.x |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The particle swarm optimization (PSO) method is an instance of a successful application of the philosophy of bounded rationality and decentralized decision making for solving global optimization problems. A number of advantages with respect to other evolutionary algorithms are attributed to PSO making it a prospective candidate for optimum structural design. The PSO-based algorithm is robust and well suited to handle nonlinear, nonconvex design spaces with discontinuities, exhibiting fast convergence characteristics. Furthermore, hybrid algorithms can exploit the advantages of the PSO and gradient methods. This article presents in detail the basic concepts and implementation of an enhanced PSO algorithm combined with a gradient-based quasi-Newton sequential quadratic programming (SQP) method for handling structural optimization problems. The proposed PSO is shown to explore the design space thoroughly and to detect the neighborhood of the global optimum. Then the mathematical optimizer, starting from the best estimate of the PSO and using gradient information, accelerates convergence toward the global optimum. A nonlinear weight update rule for PSO and a simple, yet effective, constraint handling technique for structural optimization are also proposed. The performance, the functionality, and the effect of different setting parameters are studied. The effectiveness of the approach is illustrated in some benchmark structural optimization problems. The numerical results confirm the ability of the proposed methodology to find better optimal solutions for structural optimization problems than other optimization algorithms. © 2010 Computer-Aided Civil and Infrastructure Engineering. |
en |
heal.publisher |
WILEY-BLACKWELL PUBLISHING, INC |
en |
heal.journalName |
Computer-Aided Civil and Infrastructure Engineering |
en |
dc.identifier.doi |
10.1111/j.1467-8667.2010.00664.x |
en |
dc.identifier.isi |
ISI:000285760600004 |
en |
dc.identifier.volume |
26 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
48 |
en |
dc.identifier.epage |
68 |
en |