HEAL DSpace

A Hybrid Particle Swarm-Gradient Algorithm for Global Structural Optimization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Plevris, V en
dc.contributor.author Papadrakakis, M en
dc.date.accessioned 2014-03-01T01:34:53Z
dc.date.available 2014-03-01T01:34:53Z
dc.date.issued 2011 en
dc.identifier.issn 1093-9687 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20923
dc.subject Particle Swarm en
dc.subject Structure Optimization en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Construction & Building Technology en
dc.subject.classification Engineering, Civil en
dc.subject.other Basic concepts en
dc.subject.other Best estimates en
dc.subject.other Bounded rationality en
dc.subject.other Constraint-handling techniques en
dc.subject.other Decentralized decision making en
dc.subject.other Design spaces en
dc.subject.other Fast convergence en
dc.subject.other Global optimization problems en
dc.subject.other Global optimum en
dc.subject.other Gradient algorithm en
dc.subject.other Gradient based en
dc.subject.other Gradient informations en
dc.subject.other Hybrid algorithms en
dc.subject.other Hybrid particles en
dc.subject.other Nonconvex en
dc.subject.other Numerical results en
dc.subject.other Optimal solutions en
dc.subject.other Optimization algorithms en
dc.subject.other Optimizers en
dc.subject.other Optimum structural design en
dc.subject.other PSO algorithms en
dc.subject.other Quasi-Newton en
dc.subject.other Sequential quadratic programming method en
dc.subject.other Setting parameters en
dc.subject.other Structural optimization problems en
dc.subject.other Weight update en
dc.subject.other Algorithms en
dc.subject.other Convergence of numerical methods en
dc.subject.other Decision making en
dc.subject.other Global optimization en
dc.subject.other Gradient methods en
dc.subject.other Quadratic programming en
dc.subject.other Shape optimization en
dc.subject.other Structural design en
dc.subject.other Structural optimization en
dc.subject.other Particle swarm optimization (PSO) en
dc.subject.other algorithm en
dc.subject.other benchmarking en
dc.subject.other computer aided design en
dc.subject.other decision analysis en
dc.subject.other gradient analysis en
dc.subject.other optimization en
dc.subject.other parameterization en
dc.subject.other performance assessment en
dc.subject.other structural analysis en
dc.title A Hybrid Particle Swarm-Gradient Algorithm for Global Structural Optimization en
heal.type journalArticle en
heal.identifier.primary 10.1111/j.1467-8667.2010.00664.x en
heal.identifier.secondary http://dx.doi.org/10.1111/j.1467-8667.2010.00664.x en
heal.language English en
heal.publicationDate 2011 en
heal.abstract The particle swarm optimization (PSO) method is an instance of a successful application of the philosophy of bounded rationality and decentralized decision making for solving global optimization problems. A number of advantages with respect to other evolutionary algorithms are attributed to PSO making it a prospective candidate for optimum structural design. The PSO-based algorithm is robust and well suited to handle nonlinear, nonconvex design spaces with discontinuities, exhibiting fast convergence characteristics. Furthermore, hybrid algorithms can exploit the advantages of the PSO and gradient methods. This article presents in detail the basic concepts and implementation of an enhanced PSO algorithm combined with a gradient-based quasi-Newton sequential quadratic programming (SQP) method for handling structural optimization problems. The proposed PSO is shown to explore the design space thoroughly and to detect the neighborhood of the global optimum. Then the mathematical optimizer, starting from the best estimate of the PSO and using gradient information, accelerates convergence toward the global optimum. A nonlinear weight update rule for PSO and a simple, yet effective, constraint handling technique for structural optimization are also proposed. The performance, the functionality, and the effect of different setting parameters are studied. The effectiveness of the approach is illustrated in some benchmark structural optimization problems. The numerical results confirm the ability of the proposed methodology to find better optimal solutions for structural optimization problems than other optimization algorithms. © 2010 Computer-Aided Civil and Infrastructure Engineering. en
heal.publisher WILEY-BLACKWELL PUBLISHING, INC en
heal.journalName Computer-Aided Civil and Infrastructure Engineering en
dc.identifier.doi 10.1111/j.1467-8667.2010.00664.x en
dc.identifier.isi ISI:000285760600004 en
dc.identifier.volume 26 en
dc.identifier.issue 1 en
dc.identifier.spage 48 en
dc.identifier.epage 68 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής