dc.contributor.author |
Kavallaris, NI |
en |
dc.contributor.author |
Lacey, AA |
en |
dc.contributor.author |
Nikolopoulos, CV |
en |
dc.contributor.author |
Tzanetis, DE |
en |
dc.date.accessioned |
2014-03-01T01:34:53Z |
|
dc.date.available |
2014-03-01T01:34:53Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0035-7596 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20924 |
|
dc.subject |
Electrostatic mems |
en |
dc.subject |
Hyperbolic non-local problems |
en |
dc.subject |
Quenching of solution |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
ELECTROSTATIC MEMS |
en |
dc.subject.other |
QUENCHING PROBLEM |
en |
dc.subject.other |
EQUATIONS |
en |
dc.subject.other |
TOUCHDOWN |
en |
dc.title |
A hyperbolic non-local problem modelling MEMS technology |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1216/RMJ-2011-41-2-505 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1216/RMJ-2011-41-2-505 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this work we study a non-local hyperbolic equation of the form u(tt) = u(xx) + lambda/(1 - u)(2) (1 + alpha integral(1)(0) (1/(1 - u)) dx)(2), with homogeneous Dirichlet boundary conditions and appropriate initial conditions. The problem models an idealized electrostatically actuated MEMS (Micro-Electro-Mechanical System) device. Initially we present the derivation of the model. Then we prove local existence of solutions for lambda > 0 and global existence for 0 < lambda < lambda_* for some positive lambda_*, with zero initial conditions; similar results are obtained for other initial data. For larger values of the parameter lambda, i.e., when lambda > lambda(+)* for some constant lambda(+)* >= lambda_* and with zero initial conditions, it is proved that the solution of the problem quenches in finite time; again similar results are obtained for other initial data. Finally the problem is solved numerically with a finite difference scheme. Various simulations of the solution of the problem are presented, illustrating the relevant theoretical results. |
en |
heal.publisher |
ROCKY MT MATH CONSORTIUM |
en |
heal.journalName |
Rocky Mountain Journal of Mathematics |
en |
dc.identifier.doi |
10.1216/RMJ-2011-41-2-505 |
en |
dc.identifier.isi |
ISI:000291250200010 |
en |
dc.identifier.volume |
41 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
505 |
en |
dc.identifier.epage |
534 |
en |