HEAL DSpace

A modified power spectral density test applied to weighing matrices with small weight

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kotsireas, IS en
dc.contributor.author Koukouvinos, C en
dc.contributor.author Pardalos, PM en
dc.date.accessioned 2014-03-01T01:34:54Z
dc.date.available 2014-03-01T01:34:54Z
dc.date.issued 2011 en
dc.identifier.issn 1382-6905 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20929
dc.subject Algorithm en
dc.subject Sparsity en
dc.subject Support en
dc.subject Weighing matrices en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Mathematics, Applied en
dc.subject.other Circulants en
dc.subject.other Sparsity en
dc.subject.other Weighing matrices en
dc.subject.other Algorithms en
dc.subject.other Combinatorial optimization en
dc.subject.other Discrete Fourier transforms en
dc.subject.other Power spectral density en
dc.subject.other Spectral density en
dc.subject.other Supports en
dc.subject.other Weighing en
dc.title A modified power spectral density test applied to weighing matrices with small weight en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10878-010-9335-5 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10878-010-9335-5 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract The power spectral density test has been used for at least a decade in the search for many kinds of combinatorial matrices, such as weighing matrices for instance. In this paper we establish a modified power spectral density test that we apply to the search for weighing matrices of small weights constructed from two circulants. The main novelty of our approach is to define the Discrete Fourier Transform on the support of the first rows of the two circulants, thus exploiting the inherent sparsity of the problem. This new formalism turns out to be very efficient for small weights 9,18,36 and we find 10 new weighing matrices W(2.p,18) for prime p {37,47,53,59,61,67,73,79,83,97}. These matrices are given here for the first time. We also discuss briefly a connection with Combinatorial Optimization. © 2010 Springer Science+Business Media, LLC. en
heal.publisher SPRINGER en
heal.journalName Journal of Combinatorial Optimization en
dc.identifier.doi 10.1007/s10878-010-9335-5 en
dc.identifier.isi ISI:000296520200026 en
dc.identifier.volume 22 en
dc.identifier.issue 4 en
dc.identifier.spage 873 en
dc.identifier.epage 881 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής