dc.contributor.author |
Panayotounakos, DE |
en |
dc.contributor.author |
Rizou, I |
en |
dc.contributor.author |
Theotokoglou, EE |
en |
dc.date.accessioned |
2014-03-01T01:34:55Z |
|
dc.date.available |
2014-03-01T01:34:55Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0096-3003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20936 |
|
dc.subject |
Abel equations of the second kind |
en |
dc.subject |
Euler's equations |
en |
dc.subject |
New mathematical construction |
en |
dc.subject |
Nonlinear ODEs |
en |
dc.subject |
Rigid body dynamics |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Abel equation |
en |
dc.subject.other |
Euler's equation |
en |
dc.subject.other |
Mathematical constructions |
en |
dc.subject.other |
Nonlinear ODEs |
en |
dc.subject.other |
Rigidbody dynamics |
en |
dc.subject.other |
Euler equations |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Rigid structures |
en |
dc.subject.other |
Ordinary differential equations |
en |
dc.title |
A new mathematical construction of the general nonlinear ODEs of motion in rigid body dynamics (Euler's equations) |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.amc.2011.03.057 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.amc.2011.03.057 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
It is shown that the three nonlinear dynamic Euler ordinary differential equations (ODEs), concerning the motion of a rigid body free to rotate about a fixed point, are reduced, by means of a subsidiary function which is to be determined, to three Abel equations of the second kind of the normal form. Based on a recently developed mathematical construction concerning exact analytic solutions of the Abel nonlinear ODEs of the second kind, we perform a new mathematical solution for the classical dynamic Euler nonlinear ODEs. (C) 2011 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematics and Computation |
en |
dc.identifier.doi |
10.1016/j.amc.2011.03.057 |
en |
dc.identifier.isi |
ISI:000290622200040 |
en |
dc.identifier.volume |
217 |
en |
dc.identifier.issue |
21 |
en |
dc.identifier.spage |
8534 |
en |
dc.identifier.epage |
8542 |
en |