HEAL DSpace

A new microstructure-dependent Saint-Venant torsion model based on a modified couple stress theory

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsiatas, GC en
dc.contributor.author Katsikadelis, JT en
dc.date.accessioned 2014-03-01T01:34:55Z
dc.date.available 2014-03-01T01:34:55Z
dc.date.issued 2011 en
dc.identifier.issn 0997-7538 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20938
dc.subject Analog equation method en
dc.subject Couple stress theory en
dc.subject Method of fundamental solutions en
dc.subject Microstructure en
dc.subject Strain gradient elasticity en
dc.subject Torsion en
dc.subject.classification Mechanics en
dc.subject.other Analog equation methods en
dc.subject.other Arbitrary cross section en
dc.subject.other Couple stress en
dc.subject.other Couple stress theory en
dc.subject.other Current models en
dc.subject.other Deformable bodies en
dc.subject.other Developed model en
dc.subject.other Direct Boundary Element Method en
dc.subject.other Fourth order partial differential equations en
dc.subject.other Fundamental solutions en
dc.subject.other Governing differential equations en
dc.subject.other Gradient elasticity en
dc.subject.other Kirchhoff plates en
dc.subject.other Material length scale en
dc.subject.other Method of fundamental solutions en
dc.subject.other Micron scale en
dc.subject.other Model-based OPC en
dc.subject.other Neumann boundary condition en
dc.subject.other Saint-Venant torsion en
dc.subject.other Strain gradient elasticity en
dc.subject.other Tensile membrane en
dc.subject.other Torsional response en
dc.subject.other Warping function en
dc.subject.other Boundary conditions en
dc.subject.other Elasticity en
dc.subject.other Elastohydrodynamics en
dc.subject.other Microstructure en
dc.subject.other Partial differential equations en
dc.subject.other Torsional stress en
dc.subject.other Boundary element method en
dc.title A new microstructure-dependent Saint-Venant torsion model based on a modified couple stress theory en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.euromechsol.2011.03.007 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.euromechsol.2011.03.007 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract In this paper a new modified couple stress model is developed for the Saint-Venant torsion problem of micro-bars of arbitrary cross-section. The proposed model is derived from a modified couple stress theory and has only one material length scale parameter. Using a variational procedure the governing differential equation and the associated boundary conditions are derived in terms of the warping function. This is a fourth order partial differential equation representing the analog of a Kirchhoff plate having the shape of the cross-section and subjected to a uniform tensile membrane force with mixed Neumann boundary conditions. Since the fundamental solution of the equation is known, the problem could be solved using the direct Boundary Element Method (BEM). In this investigation, however, the Analog Equation Method (AEM) solution is applied and the results are cross checked using the Method of Fundamental Solutions (MFS). Several micro-bars of various cross-sections are analyzed to illustrate the applicability of the developed model and to reveal the differences between the current model and an existing one which, however, contains two additional constants related to the microstructure. Moreover, useful conclusions are drawn from the micron-scale torsional response of micro-bars, giving thus a better insight in the gradient elasticity approach of the deformable bodies. (C) 2011 Elsevier Masson SAS. All rights reserved. en
heal.publisher GAUTHIER-VILLARS/EDITIONS ELSEVIER en
heal.journalName European Journal of Mechanics, A/Solids en
dc.identifier.doi 10.1016/j.euromechsol.2011.03.007 en
dc.identifier.isi ISI:000293485200012 en
dc.identifier.volume 30 en
dc.identifier.issue 5 en
dc.identifier.spage 741 en
dc.identifier.epage 747 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής