HEAL DSpace

A Radial Basis Function network training algorithm using a non-symmetric partition of the input space - Application to a Model Predictive Control configuration

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Alexandridis, A en
dc.contributor.author Sarimveis, H en
dc.contributor.author Ninos, K en
dc.date.accessioned 2014-03-01T01:35:00Z
dc.date.available 2014-03-01T01:35:00Z
dc.date.issued 2011 en
dc.identifier.issn 0965-9978 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20943
dc.subject Continuous stirred tank reactor en
dc.subject Fuzzy means en
dc.subject Fuzzy partition en
dc.subject Mackey-Glass en
dc.subject Model predictive control en
dc.subject Neural networks en
dc.subject Non-symmetric partition en
dc.subject Radial basis function en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.other Continuous stirred tank reactor en
dc.subject.other Fuzzy means en
dc.subject.other Fuzzy partition en
dc.subject.other Mackey-Glass en
dc.subject.other Non-symmetric partition en
dc.subject.other Radial basis functions en
dc.subject.other Learning algorithms en
dc.subject.other Neural networks en
dc.subject.other Predictive control systems en
dc.subject.other Radial basis function networks en
dc.subject.other Model predictive control en
dc.title A Radial Basis Function network training algorithm using a non-symmetric partition of the input space - Application to a Model Predictive Control configuration en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.advengsoft.2011.05.026 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.advengsoft.2011.05.026 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract This work presents the non-symmetric fuzzy means algorithm which is a new methodology for training Radial Basis Function neural network models. The method is based on a non-symmetric fuzzy partition of the space of input variables which results to networks with smaller structures and better approximation capabilities compared to other state-of-the-art training procedures. The lower modeling error and the smaller size of the produced models become particularly important when they are used in online applications. This is demonstrated by integrating the model produced by the proposed algorithm in a Model Predictive Control configuration, resulting in better control performance and shorter computational times. (C) 2011 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Advances in Engineering Software en
dc.identifier.doi 10.1016/j.advengsoft.2011.05.026 en
dc.identifier.isi ISI:000293872100012 en
dc.identifier.volume 42 en
dc.identifier.issue 10 en
dc.identifier.spage 830 en
dc.identifier.epage 837 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής