HEAL DSpace

A shift approach for the dynamic response of rigid-plastic systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Voyagaki, E en
dc.contributor.author Mylonakis, G en
dc.contributor.author Psycharis, IN en
dc.date.accessioned 2014-03-01T01:35:01Z
dc.date.available 2014-03-01T01:35:01Z
dc.date.issued 2011 en
dc.identifier.issn 0098-8847 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20944
dc.subject Analysis en
dc.subject Closed-form solution en
dc.subject Near-fault en
dc.subject Pulse en
dc.subject Rigid-plastic system en
dc.subject Scaling en
dc.subject Sliding system en
dc.subject.classification Engineering, Civil en
dc.subject.classification Engineering, Geological en
dc.subject.other Analysis en
dc.subject.other Closed-form solution en
dc.subject.other Near-fault en
dc.subject.other Pulse en
dc.subject.other Rigid-plastic system en
dc.subject.other Scaling en
dc.subject.other Sliding system en
dc.subject.other Civil engineering en
dc.subject.other Dynamic loads en
dc.subject.other Earthquakes en
dc.subject.other Professional aspects en
dc.subject.other Dynamic response en
dc.subject.other deformation en
dc.subject.other dynamic response en
dc.subject.other earthquake engineering en
dc.subject.other earthquake mechanism en
dc.subject.other ground motion en
dc.subject.other loading test en
dc.subject.other peak acceleration en
dc.subject.other seismic response en
dc.subject.other strong motion en
dc.title A shift approach for the dynamic response of rigid-plastic systems en
heal.type journalArticle en
heal.identifier.primary 10.1002/eqe.1063 en
heal.identifier.secondary http://dx.doi.org/10.1002/eqe.1063 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract A shift approach is presented for evaluating and interpreting the response of rigid-perfectly plastic single-degree-of-freedom systems to dynamic loading. Scaling laws for such systems are, as the term suggests, multiplicative in nature, relating peak dynamic response to products of key problem parameters such as linear spectral coordinates, force reduction coefficient and peak values of the excitation and its time derivatives. Contrary to classical laws, the proposed approach is additive, imposing a shift in the ordinates and the abscissa of the excitation function by means of a set of parameters uniquely related to the yielding resistance of the system. The dynamic response is then obtained by integrating the modified excitation function in a linear-like manner within a particular yielding branch, for the nonlinearity is incorporated into the forcing term. The mathematical validity of the approach is demonstrated analytically and its importance is highlighted for systems with symmetric yielding resistance subjected to near-fault earthquake motions. The modified excitation function may be discontinuous between different yielding branches and relates uniquely to the development of plastic deformation. It is thereby referred to as Plastic Input Motion (PIM). It is shown that the ordinates and the duration of this function may be significantly (yet not necessarily) smaller than those of the original ground motion depending on yield strength. The relationship of the proposed approach to the existing methods and parameters of earthquake engineering such as Newmark's sliding block and relative ground acceleration, is discussed. Copyright (C) 2010 John Wiley & Sons, Ltd. en
heal.publisher WILEY-BLACKWELL en
heal.journalName Earthquake Engineering and Structural Dynamics en
dc.identifier.doi 10.1002/eqe.1063 en
dc.identifier.isi ISI:000291497800002 en
dc.identifier.volume 40 en
dc.identifier.issue 8 en
dc.identifier.spage 847 en
dc.identifier.epage 866 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής