HEAL DSpace

A timestepper-based approach for the coarse-grained analysis of microscopic neuronal simulators on networks: Bifurcation and rare-events micro- to macro-computations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Spiliotis, KG en
dc.contributor.author Siettos, CI en
dc.date.accessioned 2014-03-01T01:35:03Z
dc.date.available 2014-03-01T01:35:03Z
dc.date.issued 2011 en
dc.identifier.issn 0925-2312 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20954
dc.subject Bifurcation analysis en
dc.subject Complex networks en
dc.subject Complex systems en
dc.subject Degree distribution en
dc.subject Equation Free computations en
dc.subject Multi-scale dynamics en
dc.subject Neuronal models en
dc.subject Nonlinear dynamics en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Bifurcation analysis en
dc.subject.other Complex networks en
dc.subject.other Degree distributions en
dc.subject.other Equation-Free en
dc.subject.other Multi-scale dynamics en
dc.subject.other Neuronal model en
dc.subject.other Non-linear dynamics en
dc.subject.other Bifurcation (mathematics) en
dc.subject.other Dynamics en
dc.subject.other Large scale systems en
dc.subject.other Stochastic models en
dc.subject.other article en
dc.subject.other data extraction en
dc.subject.other mathematical computing en
dc.subject.other mathematical model en
dc.subject.other nerve cell en
dc.subject.other nerve cell network en
dc.subject.other priority journal en
dc.subject.other simulator en
dc.subject.other stochastic model en
dc.title A timestepper-based approach for the coarse-grained analysis of microscopic neuronal simulators on networks: Bifurcation and rare-events micro- to macro-computations en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.neucom.2011.06.018 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.neucom.2011.06.018 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract We show how the Equation Free approach for multi-scale computations can be exploited to extract, in a computational rigorous and systematic way the emergent dynamical attributes, from detailed large-scale microscopic stochastic models of neurons that interact on complex networks. In particular we show how bifurcation, stability analysis and estimation of mean appearance times of rare events can be derived bypassing the need for obtaining analytical approximations, providing an "on-demand" model reduction with respect to the underlying degree distribution. (C) 2011 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Neurocomputing en
dc.identifier.doi 10.1016/j.neucom.2011.06.018 en
dc.identifier.isi ISI:000296212400089 en
dc.identifier.volume 74 en
dc.identifier.issue 17 en
dc.identifier.spage 3576 en
dc.identifier.epage 3589 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής