dc.contributor.author |
Spiliotis, KG |
en |
dc.contributor.author |
Siettos, CI |
en |
dc.date.accessioned |
2014-03-01T01:35:03Z |
|
dc.date.available |
2014-03-01T01:35:03Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0925-2312 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20954 |
|
dc.subject |
Bifurcation analysis |
en |
dc.subject |
Complex networks |
en |
dc.subject |
Complex systems |
en |
dc.subject |
Degree distribution |
en |
dc.subject |
Equation Free computations |
en |
dc.subject |
Multi-scale dynamics |
en |
dc.subject |
Neuronal models |
en |
dc.subject |
Nonlinear dynamics |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.other |
Bifurcation analysis |
en |
dc.subject.other |
Complex networks |
en |
dc.subject.other |
Degree distributions |
en |
dc.subject.other |
Equation-Free |
en |
dc.subject.other |
Multi-scale dynamics |
en |
dc.subject.other |
Neuronal model |
en |
dc.subject.other |
Non-linear dynamics |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Large scale systems |
en |
dc.subject.other |
Stochastic models |
en |
dc.subject.other |
article |
en |
dc.subject.other |
data extraction |
en |
dc.subject.other |
mathematical computing |
en |
dc.subject.other |
mathematical model |
en |
dc.subject.other |
nerve cell |
en |
dc.subject.other |
nerve cell network |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
simulator |
en |
dc.subject.other |
stochastic model |
en |
dc.title |
A timestepper-based approach for the coarse-grained analysis of microscopic neuronal simulators on networks: Bifurcation and rare-events micro- to macro-computations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.neucom.2011.06.018 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.neucom.2011.06.018 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
We show how the Equation Free approach for multi-scale computations can be exploited to extract, in a computational rigorous and systematic way the emergent dynamical attributes, from detailed large-scale microscopic stochastic models of neurons that interact on complex networks. In particular we show how bifurcation, stability analysis and estimation of mean appearance times of rare events can be derived bypassing the need for obtaining analytical approximations, providing an "on-demand" model reduction with respect to the underlying degree distribution. (C) 2011 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Neurocomputing |
en |
dc.identifier.doi |
10.1016/j.neucom.2011.06.018 |
en |
dc.identifier.isi |
ISI:000296212400089 |
en |
dc.identifier.volume |
74 |
en |
dc.identifier.issue |
17 |
en |
dc.identifier.spage |
3576 |
en |
dc.identifier.epage |
3589 |
en |