HEAL DSpace

A unified two-phase potential method for elastic Bi-material: Planar interfaces

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kattis, MA en
dc.contributor.author Mavroyannis, GD en
dc.date.accessioned 2014-03-01T01:35:03Z
dc.date.available 2014-03-01T01:35:03Z
dc.date.issued 2011 en
dc.identifier.issn 0374-3535 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20956
dc.subject Anisotropic/isotropic bimaterials en
dc.subject Interface crack en
dc.subject Two-phase potentials en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.classification Mechanics en
dc.subject.other Anisotropic elasticity en
dc.subject.other Bi-material en
dc.subject.other Bimaterials en
dc.subject.other Complex matrices en
dc.subject.other Constituent materials en
dc.subject.other Elastic fields en
dc.subject.other Elastic properties en
dc.subject.other Eshelby en
dc.subject.other Holomorphic functions en
dc.subject.other Interface crack en
dc.subject.other Interface crack problem en
dc.subject.other Interfacial bonding en
dc.subject.other Isotropic elasticity en
dc.subject.other Isotropic materials en
dc.subject.other Muskhelishvili en
dc.subject.other Planar interface en
dc.subject.other Potential methods en
dc.subject.other Two-phase potentials en
dc.subject.other Unified approach en
dc.subject.other Uniform stress en
dc.subject.other Universal relationship en
dc.subject.other Anisotropy en
dc.subject.other Cracks en
dc.subject.other Dissimilar materials en
dc.subject.other Elasticity en
dc.subject.other Function evaluation en
dc.subject.other Stresses en
dc.subject.other Phase interfaces en
dc.title A unified two-phase potential method for elastic Bi-material: Planar interfaces en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10659-010-9273-6 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10659-010-9273-6 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract This paper gives a unified approach to analyze two-dimensional elastic deformations of a composite body consisting of two dissimilar anisotropic or isotropic materials perfectly bonded along a planar interface. The Eshelby et al. formalism of anisotropic elasticity is linked with that of Kolosov-Muskhelishvili for isotropic elasticity by means of two complex matrix functions describing completely the arising elastic fields. These functions, whose elements are holomorphic functions, are defined as the two-phase potentials of the bimaterial. The present work is concerned with bi-materials whose constituent materials occupy the whole space and are connected by a planar interface. The elastic fields arising in such a bimaterial are given by universal relationships in terms of the two-phase potentials. Then, the general results obtained are implemented to study two interesting bimaterial problems: the problem of a uniformly stressed bimaterial with a perfect interfacial bonding, and the interface crack problem of a bimaterial with a general loading. For both problems, all combinations of the elastic properties of the constituent materials are considered. For the first problem, the constraints, which must be imposed between the components of the applied uniform stress fields, are established, so that they are admissible as elastic fields of the bimaterial. For the interface crack problem, the solution is obtained for a general loading applied in the body. Detailed results are given for the case of a remote uniform stress field applied to the bimaterial constituents. © 2010 Springer Science+Business Media B.V. en
heal.publisher SPRINGER en
heal.journalName Journal of Elasticity en
dc.identifier.doi 10.1007/s10659-010-9273-6 en
dc.identifier.isi ISI:000287151600004 en
dc.identifier.volume 103 en
dc.identifier.issue 1 en
dc.identifier.spage 73 en
dc.identifier.epage 94 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής