dc.contributor.author |
Koukouvinos, C |
en |
dc.contributor.author |
Mylona, K |
en |
dc.contributor.author |
Skountzou, A |
en |
dc.date.accessioned |
2014-03-01T01:35:03Z |
|
dc.date.available |
2014-03-01T01:35:03Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0361-0918 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20957 |
|
dc.subject |
Best subset method |
en |
dc.subject |
Information criteria |
en |
dc.subject |
Supersaturated designs |
en |
dc.subject |
Variable selection |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
Active variables |
en |
dc.subject.other |
Best subset method |
en |
dc.subject.other |
Factorial design |
en |
dc.subject.other |
Information criterion |
en |
dc.subject.other |
Large class |
en |
dc.subject.other |
Simulated experiments |
en |
dc.subject.other |
Statistical analysis |
en |
dc.subject.other |
Supersaturated designs |
en |
dc.subject.other |
Variable selection |
en |
dc.subject.other |
Variable selection methods |
en |
dc.subject.other |
Design |
en |
dc.title |
A variable selection method for analyzing supersaturated designs |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/03610918.2010.546540 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/03610918.2010.546540 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Supersaturated designs are a large class of factorial designs which can be used for screening out the important factors from a large set of potentially active variables. The huge advantage of these designs is that they reduce the experimental cost drastically, but their critical disadvantage is the confounding involved in the statistical analysis. In this article, we propose a method for analyzing data using several types of supersaturated designs. Modifications of widely used information criteria are given and applied to the variable selection procedure for the identification of the active factors. The effectiveness of the proposed method is depicted via simulated experiments and comparisons. Copyright © 2011 Taylor & Francis Group, LLC. |
en |
heal.publisher |
TAYLOR & FRANCIS INC |
en |
heal.journalName |
Communications in Statistics: Simulation and Computation |
en |
dc.identifier.doi |
10.1080/03610918.2010.546540 |
en |
dc.identifier.isi |
ISI:000288264100002 |
en |
dc.identifier.volume |
40 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
484 |
en |
dc.identifier.epage |
496 |
en |