HEAL DSpace

An analytical probability distribution for the factor of safety in underground rock mechanics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Nomikos, PP en
dc.contributor.author Sofianos, AI en
dc.date.accessioned 2014-03-01T01:35:06Z
dc.date.available 2014-03-01T01:35:06Z
dc.date.issued 2011 en
dc.identifier.issn 1365-1609 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20970
dc.subject Density function en
dc.subject Factor of safety en
dc.subject Pillar stability en
dc.subject Probability of failure en
dc.subject Suspended roofs en
dc.subject Underground rock mechanics en
dc.subject.classification Engineering, Geological en
dc.subject.classification Mining & Mineral Processing en
dc.subject.other Density functions en
dc.subject.other Factor of safety en
dc.subject.other Pillar stability en
dc.subject.other Probability of failure en
dc.subject.other Suspended roofs en
dc.subject.other Underground rock mechanics en
dc.subject.other Distribution functions en
dc.subject.other Probability density function en
dc.subject.other Probability distributions en
dc.subject.other Random variables en
dc.subject.other Rock mechanics en
dc.subject.other Rocks en
dc.subject.other Roofs en
dc.subject.other Structural design en
dc.subject.other Safety factor en
dc.subject.other failure analysis en
dc.subject.other pillar en
dc.subject.other probability density function en
dc.subject.other rock mechanics en
dc.subject.other roof en
dc.subject.other safety en
dc.subject.other subterranean environment en
dc.title An analytical probability distribution for the factor of safety in underground rock mechanics en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijrmms.2011.02.015 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijrmms.2011.02.015 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract In many underground rock mechanics cases, the factor of safety may be defined as the ratio of the capacity, of the rock or its support elements, to the pertinent demand. By representing the capacity and the demand as uniform random variables, an analytic solution is obtained for the probability distribution of the factor of safety and its probability density and cumulative distribution functions. Closed form solutions for the calculation of the mean value, the standard deviation and the minimum and maximum values of the factor of safety, are thus provided. Four relative positions are possible for the demand and capacity density functions, according to their limits. Closed form solutions are provided for the probability of failure for the identified relative positions. Application of the developed analytical solutions for the probabilistic analysis of two cases of underground roofs and four cases of room pillars follows straight forward. This methodology proves also useful for the utilization of field observations or for the extrapolation of any specific design. It allows, finally, for the parametric evaluation of the effect of specific design variables to the distribution of the safety factor. (C) 2011 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Rock Mechanics and Mining Sciences en
dc.identifier.doi 10.1016/j.ijrmms.2011.02.015 en
dc.identifier.isi ISI:000290783300008 en
dc.identifier.volume 48 en
dc.identifier.issue 4 en
dc.identifier.spage 597 en
dc.identifier.epage 605 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής