HEAL DSpace

An insulin infusion advisory system based on autotuning nonlinear model-predictive control

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zarkogianni, K en
dc.contributor.author Vazeou, A en
dc.contributor.author Mougiakakou, SG en
dc.contributor.author Prountzou, A en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T01:35:12Z
dc.date.available 2014-03-01T01:35:12Z
dc.date.issued 2011 en
dc.identifier.issn 0018-9294 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20981
dc.subject Artificial pancreas (AP) en
dc.subject autotuning model-predictive control en
dc.subject personalized model en
dc.subject type I diabetes mellitus (T1DM) en
dc.subject.classification Engineering, Biomedical en
dc.subject.other Advisory systems en
dc.subject.other Artificial pancreas (AP) en
dc.subject.other Autotuning en
dc.subject.other Compartmental model en
dc.subject.other Control parameters en
dc.subject.other Glucose measurements en
dc.subject.other Glucose monitors en
dc.subject.other In-silico en
dc.subject.other Insulin infusion rate en
dc.subject.other Insulin infusions en
dc.subject.other Insulin pumps en
dc.subject.other On-line adaptation en
dc.subject.other personalized model en
dc.subject.other Physiological parameters en
dc.subject.other Real-time estimation en
dc.subject.other Simulation environment en
dc.subject.other Type 1 diabetes mellitus en
dc.subject.other Type I diabetes en
dc.subject.other Estimation en
dc.subject.other Forecasting en
dc.subject.other Fuzzy logic en
dc.subject.other Glucose en
dc.subject.other Insulin en
dc.subject.other Nonlinear systems en
dc.subject.other Parameter estimation en
dc.subject.other Physiological models en
dc.subject.other Physiology en
dc.subject.other Predictive control systems en
dc.subject.other Recurrent neural networks en
dc.subject.other Model predictive control en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other blood glucose monitoring en
dc.subject.other compartment model en
dc.subject.other food intake en
dc.subject.other fuzzy logic en
dc.subject.other glucose absorption en
dc.subject.other glucose blood level en
dc.subject.other glucose metabolism en
dc.subject.other insulin dependent diabetes mellitus en
dc.subject.other insulin infusion en
dc.subject.other insulin metabolism en
dc.subject.other insulin pump en
dc.subject.other intestine absorption en
dc.subject.other nonlinear system en
dc.subject.other prediction en
dc.subject.other Adult en
dc.subject.other Algorithms en
dc.subject.other Blood Glucose en
dc.subject.other Computer Simulation en
dc.subject.other Diabetes Mellitus, Type 1 en
dc.subject.other Fuzzy Logic en
dc.subject.other Humans en
dc.subject.other Individualized Medicine en
dc.subject.other Insulin Infusion Systems en
dc.subject.other Models, Biological en
dc.subject.other Nonlinear Dynamics en
dc.subject.other Pancreas, Artificial en
dc.subject.other Signal Processing, Computer-Assisted en
dc.title An insulin infusion advisory system based on autotuning nonlinear model-predictive control en
heal.type journalArticle en
heal.identifier.primary 10.1109/TBME.2011.2157823 en
heal.identifier.secondary http://dx.doi.org/10.1109/TBME.2011.2157823 en
heal.identifier.secondary 5776665 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patients information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions. The predictions are fed to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. An algorithm based on fuzzy logic has been developed for the on-line adaptation of the NMPC control parameters. The IIAS has been in silico evaluated using an appropriate simulation environment (UVa T1DM simulator). The IIAS was able to handle various meal profiles, fasting conditions, interpatient variability, intraday variation in physiological parameters, and errors in meal amount estimations. © 2011 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Biomedical Engineering en
dc.identifier.doi 10.1109/TBME.2011.2157823 en
dc.identifier.isi ISI:000294127700005 en
dc.identifier.volume 58 en
dc.identifier.issue 9 en
dc.identifier.spage 2467 en
dc.identifier.epage 2477 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής