dc.contributor.author |
Zarkogianni, K |
en |
dc.contributor.author |
Vazeou, A |
en |
dc.contributor.author |
Mougiakakou, SG |
en |
dc.contributor.author |
Prountzou, A |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.date.accessioned |
2014-03-01T01:35:12Z |
|
dc.date.available |
2014-03-01T01:35:12Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0018-9294 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20981 |
|
dc.subject |
Artificial pancreas (AP) |
en |
dc.subject |
autotuning model-predictive control |
en |
dc.subject |
personalized model |
en |
dc.subject |
type I diabetes mellitus (T1DM) |
en |
dc.subject.classification |
Engineering, Biomedical |
en |
dc.subject.other |
Advisory systems |
en |
dc.subject.other |
Artificial pancreas (AP) |
en |
dc.subject.other |
Autotuning |
en |
dc.subject.other |
Compartmental model |
en |
dc.subject.other |
Control parameters |
en |
dc.subject.other |
Glucose measurements |
en |
dc.subject.other |
Glucose monitors |
en |
dc.subject.other |
In-silico |
en |
dc.subject.other |
Insulin infusion rate |
en |
dc.subject.other |
Insulin infusions |
en |
dc.subject.other |
Insulin pumps |
en |
dc.subject.other |
On-line adaptation |
en |
dc.subject.other |
personalized model |
en |
dc.subject.other |
Physiological parameters |
en |
dc.subject.other |
Real-time estimation |
en |
dc.subject.other |
Simulation environment |
en |
dc.subject.other |
Type 1 diabetes mellitus |
en |
dc.subject.other |
Type I diabetes |
en |
dc.subject.other |
Estimation |
en |
dc.subject.other |
Forecasting |
en |
dc.subject.other |
Fuzzy logic |
en |
dc.subject.other |
Glucose |
en |
dc.subject.other |
Insulin |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Physiological models |
en |
dc.subject.other |
Physiology |
en |
dc.subject.other |
Predictive control systems |
en |
dc.subject.other |
Recurrent neural networks |
en |
dc.subject.other |
Model predictive control |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
article |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
blood glucose monitoring |
en |
dc.subject.other |
compartment model |
en |
dc.subject.other |
food intake |
en |
dc.subject.other |
fuzzy logic |
en |
dc.subject.other |
glucose absorption |
en |
dc.subject.other |
glucose blood level |
en |
dc.subject.other |
glucose metabolism |
en |
dc.subject.other |
insulin dependent diabetes mellitus |
en |
dc.subject.other |
insulin infusion |
en |
dc.subject.other |
insulin metabolism |
en |
dc.subject.other |
insulin pump |
en |
dc.subject.other |
intestine absorption |
en |
dc.subject.other |
nonlinear system |
en |
dc.subject.other |
prediction |
en |
dc.subject.other |
Adult |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Blood Glucose |
en |
dc.subject.other |
Computer Simulation |
en |
dc.subject.other |
Diabetes Mellitus, Type 1 |
en |
dc.subject.other |
Fuzzy Logic |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Individualized Medicine |
en |
dc.subject.other |
Insulin Infusion Systems |
en |
dc.subject.other |
Models, Biological |
en |
dc.subject.other |
Nonlinear Dynamics |
en |
dc.subject.other |
Pancreas, Artificial |
en |
dc.subject.other |
Signal Processing, Computer-Assisted |
en |
dc.title |
An insulin infusion advisory system based on autotuning nonlinear model-predictive control |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TBME.2011.2157823 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TBME.2011.2157823 |
en |
heal.identifier.secondary |
5776665 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patients information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions. The predictions are fed to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. An algorithm based on fuzzy logic has been developed for the on-line adaptation of the NMPC control parameters. The IIAS has been in silico evaluated using an appropriate simulation environment (UVa T1DM simulator). The IIAS was able to handle various meal profiles, fasting conditions, interpatient variability, intraday variation in physiological parameters, and errors in meal amount estimations. © 2011 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Biomedical Engineering |
en |
dc.identifier.doi |
10.1109/TBME.2011.2157823 |
en |
dc.identifier.isi |
ISI:000294127700005 |
en |
dc.identifier.volume |
58 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
2467 |
en |
dc.identifier.epage |
2477 |
en |