HEAL DSpace

Analysis of inhomogeneous anisotropic viscoelastic bodies described by multi-parameter fractional differential constitutive models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Nerantzaki, MS en
dc.contributor.author Babouskos, NG en
dc.date.accessioned 2014-03-01T01:35:13Z
dc.date.available 2014-03-01T01:35:13Z
dc.date.issued 2011 en
dc.identifier.issn 0898-1221 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20987
dc.subject Analog equation method en
dc.subject Boundary element method en
dc.subject Fractional multi-term viscoelastic models en
dc.subject Inhomogeneous anisotropic viscoelasticity en
dc.subject Numerical solution en
dc.subject Partial fractional differential equations en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Mathematics, Applied en
dc.subject.other Analog equation methods en
dc.subject.other Anisotropic viscoelasticity en
dc.subject.other Boundary elements en
dc.subject.other Fractional differential equations en
dc.subject.other Numerical solution en
dc.subject.other Viscoelastic models en
dc.subject.other Anisotropy en
dc.subject.other Beams and girders en
dc.subject.other Boundary element method en
dc.subject.other Constitutive equations en
dc.subject.other Differentiation (calculus) en
dc.subject.other Models en
dc.subject.other Numerical methods en
dc.subject.other Ordinary differential equations en
dc.subject.other Partial differential equations en
dc.subject.other Viscoelasticity en
dc.title Analysis of inhomogeneous anisotropic viscoelastic bodies described by multi-parameter fractional differential constitutive models en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.camwa.2011.05.003 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.camwa.2011.05.003 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract The response to static loads of plane inhomogeneous anisotropic bodies made of linear viscoelastic materials is investigated. Multi-parameter differential viscoelastic constitutive equations are employed, which are generalized using fractional order time derivatives. The governing equations, which are derived by considering the equilibrium of the plane body element, are two coupled linear fractional evolution partial differential equations in terms of the displacement components. Using the Analog Equation Method (AEM) in conjunction with the Boundary Element Method (BEM) these equations are transformed into a system of multi-term ordinary fractional differential equations (FDEs), which are solved using a numerical method for FDEs developed recently by Katsikadelis. Numerical examples are presented, which not only demonstrate the efficiency of the solution procedure and validate its accuracy, but also permit a better understanding of the response of plane bodies described by different viscoelastic models. (C) 2011 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Computers and Mathematics with Applications en
dc.identifier.doi 10.1016/j.camwa.2011.05.003 en
dc.identifier.isi ISI:000294083500012 en
dc.identifier.volume 62 en
dc.identifier.issue 3 en
dc.identifier.spage 945 en
dc.identifier.epage 960 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής