dc.contributor.author |
Chorianopoulos, C |
en |
dc.contributor.author |
Psarrakos, P |
en |
dc.date.accessioned |
2014-03-01T01:35:22Z |
|
dc.date.available |
2014-03-01T01:35:22Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0024-3795 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21019 |
|
dc.subject |
-Orthogonality |
en |
dc.subject |
Birkhoff-James orthogonality |
en |
dc.subject |
Boundary |
en |
dc.subject |
Eigenvalue |
en |
dc.subject |
Matrix polynomial |
en |
dc.subject |
Numerical range |
en |
dc.subject |
Rectangular matrix |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Boundary |
en |
dc.subject.other |
Eigen-value |
en |
dc.subject.other |
Matrix polynomial |
en |
dc.subject.other |
Numerical range |
en |
dc.subject.other |
Orthogonality |
en |
dc.subject.other |
Rectangular matrix |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Polynomials |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.title |
Birkhoff-James approximate orthogonality sets and numerical ranges |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.laa.2010.12.008 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.laa.2010.12.008 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this paper, the notion of Birkhoff-James approximate orthogonality sets is introduced for rectangular matrices and matrix polynomials. The proposed definition yields a natural generalization of standard numerical range and q-numerical range (and also of recent extensions), sharing with them several geometric properties. (C) 2010 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Linear Algebra and Its Applications |
en |
dc.identifier.doi |
10.1016/j.laa.2010.12.008 |
en |
dc.identifier.isi |
ISI:000288300700006 |
en |
dc.identifier.volume |
434 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
2089 |
en |
dc.identifier.epage |
2108 |
en |