dc.contributor.author |
Doka, K |
en |
dc.contributor.author |
Tsoumakos, D |
en |
dc.contributor.author |
Koziris, N |
en |
dc.date.accessioned |
2014-03-01T01:35:22Z |
|
dc.date.available |
2014-03-01T01:35:22Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0743-7315 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21021 |
|
dc.subject |
Data cube |
en |
dc.subject |
Data warehousing |
en |
dc.subject |
Peer-to-Peer |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Analytical queries |
en |
dc.subject.other |
Brown dwarfs |
en |
dc.subject.other |
Data cube |
en |
dc.subject.other |
Data warehousing systems |
en |
dc.subject.other |
Distributed data |
en |
dc.subject.other |
Distributed data structures |
en |
dc.subject.other |
Fault-tolerant |
en |
dc.subject.other |
Indexing structures |
en |
dc.subject.other |
Multidimensional data |
en |
dc.subject.other |
Network node |
en |
dc.subject.other |
Node failure |
en |
dc.subject.other |
On-the-fly |
en |
dc.subject.other |
Parallelizations |
en |
dc.subject.other |
Peer to peer |
en |
dc.subject.other |
Skewed data |
en |
dc.subject.other |
Unstructured peer-to-peer |
en |
dc.subject.other |
Data structures |
en |
dc.subject.other |
Data warehouses |
en |
dc.subject.other |
Distributed computer systems |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Stars |
en |
dc.subject.other |
Systems analysis |
en |
dc.subject.other |
Warehouses |
en |
dc.subject.other |
Search engines |
en |
dc.title |
Brown Dwarf: A fully-distributed, fault-tolerant data warehousing system |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jpdc.2011.07.008 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jpdc.2011.07.008 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this paper we present the Brown Dwarf, a distributed data analytics system designed to efficiently store, query and update multidimensional data over commodity network nodes, without the use of any proprietary tool. Brown Dwarf distributes a centralized indexing structure among peers on-the-fly,. reducing cube creation and querying times by enforcing parallelization. Analytical queries are naturally performed on-line through cooperating nodes that form an unstructured Peer-to-Peer overlay. Updates are also performed on-line, eliminating the usually costly over-night process. Moreover, the system employs an adaptive replication scheme that adjusts to the workload skew as well as the network churn by expanding or shrinking the units of the distributed data structure. Our system has been thoroughly evaluated on an actual testbed: it manages to accelerate cube creation up and querying up to several tens of times compared to the centralized solution by exploiting the capabilities of the available network nodes working in parallel. It also manages to quickly adapt even after sudden bursts in load and remains unaffected with a considerable fraction of frequent node failures. These advantages are even more apparent for dense and skewed data cubes and workloads. (C) 2011 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Parallel and Distributed Computing |
en |
dc.identifier.doi |
10.1016/j.jpdc.2011.07.008 |
en |
dc.identifier.isi |
ISI:000295018500002 |
en |
dc.identifier.volume |
71 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1434 |
en |
dc.identifier.epage |
1446 |
en |