dc.contributor.author |
Papanicolopulos, S-A |
en |
dc.date.accessioned |
2014-03-01T01:35:23Z |
|
dc.date.available |
2014-03-01T01:35:23Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0020-7683 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21029 |
|
dc.subject |
Chirality |
en |
dc.subject |
Gradient elasticity |
en |
dc.subject |
Isotropy |
en |
dc.subject |
Microstructure |
en |
dc.subject |
Torsion |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Cosserat |
en |
dc.subject.other |
Cosserat elasticity |
en |
dc.subject.other |
Gradient elasticity |
en |
dc.subject.other |
Isotropy |
en |
dc.subject.other |
Linear gradients |
en |
dc.subject.other |
Material models |
en |
dc.subject.other |
Three-dimensional deformations |
en |
dc.subject.other |
Torsion |
en |
dc.subject.other |
Chirality |
en |
dc.subject.other |
Continuum mechanics |
en |
dc.subject.other |
Elastohydrodynamics |
en |
dc.subject.other |
Enantiomers |
en |
dc.subject.other |
Microstructure |
en |
dc.subject.other |
Stereochemistry |
en |
dc.subject.other |
Torsional stress |
en |
dc.subject.other |
Elasticity |
en |
dc.title |
Chirality in isotropic linear gradient elasticity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijsolstr.2010.11.007 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijsolstr.2010.11.007 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Chirality is, generally speaking, the property of an object that can be classified as left- or right-handed. Though it plays an important role in many branches of science, chirality is encountered less often in continuum mechanics, so most classical material models do not account for it. In the context of elasticity, for example, classical elasticity is not chiral, leading different authors to use Cosserat elasticity to allow modelling of chiral behaviour. Gradient elasticity can also model chiral behaviour, however this has received much less attention than its Cosserat counterpart. This paper shows how in the case of isotropic linear gradient elasticity a single additional parameter can be introduced that describes chiral behaviour. This additional parameter, directly linked to three-dimensional deformation, can be either negative or positive, with its sign indicating a discrimination between the two opposite directions of torsion. Two simple examples are presented to show the practical effects of the chiral behaviour. (C) 2010 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Solids and Structures |
en |
dc.identifier.doi |
10.1016/j.ijsolstr.2010.11.007 |
en |
dc.identifier.isi |
ISI:000287555300011 |
en |
dc.identifier.volume |
48 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
745 |
en |
dc.identifier.epage |
752 |
en |