dc.contributor.author |
Ventouras, EM |
en |
dc.contributor.author |
Asvestas, P |
en |
dc.contributor.author |
Karanasiou, I |
en |
dc.contributor.author |
Matsopoulos, GK |
en |
dc.date.accessioned |
2014-03-01T01:35:24Z |
|
dc.date.available |
2014-03-01T01:35:24Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0010-4825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21031 |
|
dc.subject |
Error Positivity (Pe) |
en |
dc.subject |
Error-Related Negativity (ERN) |
en |
dc.subject |
Event-Related Potentials (ERPs) |
en |
dc.subject |
KNN |
en |
dc.subject |
Support Vector Machines (SVM) |
en |
dc.subject.classification |
Biology |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Biomedical |
en |
dc.subject.classification |
Mathematical & Computational Biology |
en |
dc.subject.other |
Classification results |
en |
dc.subject.other |
Event related potentials |
en |
dc.subject.other |
Feature selection |
en |
dc.subject.other |
Incorrect action |
en |
dc.subject.other |
KNN |
en |
dc.subject.other |
Leave-one-out |
en |
dc.subject.other |
Sensitivity and specificity |
en |
dc.subject.other |
Statistical measures |
en |
dc.subject.other |
Support Vector Machines (SVM) |
en |
dc.subject.other |
Time windows |
en |
dc.subject.other |
Classifiers |
en |
dc.subject.other |
Enterprise resource planning |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Vehicle routing |
en |
dc.subject.other |
Support vector machines |
en |
dc.subject.other |
article |
en |
dc.subject.other |
electrophysiology |
en |
dc.subject.other |
error |
en |
dc.subject.other |
error related negativity |
en |
dc.subject.other |
error related positivity |
en |
dc.subject.other |
event related potential |
en |
dc.subject.other |
human |
en |
dc.subject.other |
information processing |
en |
dc.subject.other |
k nearest neighbor |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
sensitivity and specificity |
en |
dc.subject.other |
statistical analysis |
en |
dc.subject.other |
support vector machine |
en |
dc.subject.other |
task performance |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Analysis of Variance |
en |
dc.subject.other |
Computational Biology |
en |
dc.subject.other |
Electroencephalography |
en |
dc.subject.other |
Evoked Potentials |
en |
dc.subject.other |
Fuzzy Logic |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Reaction Time |
en |
dc.subject.other |
Reproducibility of Results |
en |
dc.subject.other |
Sensitivity and Specificity |
en |
dc.subject.other |
Signal Processing, Computer-Assisted |
en |
dc.title |
Classification of Error-Related Negativity (ERN) and Positivity (Pe) potentials using kNN and Support Vector Machines |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.compbiomed.2010.12.004 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.compbiomed.2010.12.004 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Error processing in subjects performing actions has been associated with the Event-Related Potential (ERP) components called Error-Related Negativity (ERN) and Error Positivity (Pe). In this paper, features based on statistical measures of the sample of averaged ERP recordings are used for classifying correct from incorrect actions. Three feature selection techniques were used and compared. Classification was done by means of a kNN and a Support Vector Machines (SVM) classifier. The use of a leave-one-out approach in the feature selection provided sensitivity and specificity values concurrently higher than or equal to 87.5%, for both classifiers. The classification results were significantly better for the time window that included only the ERN, as compared to time windows including also Pe. (C) 2010 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers in Biology and Medicine |
en |
dc.identifier.doi |
10.1016/j.compbiomed.2010.12.004 |
en |
dc.identifier.isi |
ISI:000287621800004 |
en |
dc.identifier.volume |
41 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
98 |
en |
dc.identifier.epage |
109 |
en |