HEAL DSpace

Combined logical and data-driven models for linking signalling pathways to cellular response

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Melas, IN en
dc.contributor.author Mitsos, A en
dc.contributor.author Messinis, DE en
dc.contributor.author Weiss, TS en
dc.contributor.author Alexopoulos, LG en
dc.date.accessioned 2014-03-01T01:35:25Z
dc.date.available 2014-03-01T01:35:25Z
dc.date.issued 2011 en
dc.identifier.issn 1752-0509 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21039
dc.subject a priori knowledge en
dc.subject Cell Growth en
dc.subject Differential Gene Expression en
dc.subject Hybrid Logic en
dc.subject Integer Linear Program en
dc.subject Signalling Pathway en
dc.subject High Throughput en
dc.subject Proof of Principle en
dc.subject.classification Mathematical & Computational Biology en
dc.subject.other GROWTH-FACTOR RECEPTOR en
dc.subject.other TYROSINE KINASE INHIBITOR en
dc.subject.other HEPATOCELLULAR-CARCINOMA en
dc.subject.other TUMOR-CELLS en
dc.subject.other NETWORKS en
dc.subject.other TRANSDUCTION en
dc.subject.other INFLAMMATION en
dc.subject.other CANCER en
dc.subject.other HEPATOCYTES en
dc.subject.other ACTIVATION en
dc.title Combined logical and data-driven models for linking signalling pathways to cellular response en
heal.type journalArticle en
heal.identifier.primary 10.1186/1752-0509-5-107 en
heal.identifier.secondary http://dx.doi.org/10.1186/1752-0509-5-107 en
heal.identifier.secondary 107 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract Background: Signalling pathways are the cornerstone on understanding cell function and predicting cell behavior. Recently, logical models of canonical pathways have been optimised with high-throughput phosphoproteomic data to construct cell-type specific pathways. However, less is known on how signalling pathways can be linked to a cellular response such as cell growth, death, cytokine secretion, or transcriptional activity.Results: In this work, we measure the signalling activity (phosphorylation levels) and phenotypic behavior (cytokine secretion) of normal and cancer hepatocytes treated with a combination of cytokines and inhibitors. Using the two datasets, we construct ""extended"" pathways that integrate intracellular activity with cellular responses using a hybrid logical/data-driven computational approach. Boolean logic is used whenever a priori knowledge is accessible (i.e., construction of canonical pathways), whereas a data-driven approach is used for linking cellular behavior to signalling activity via non-canonical edges. The extended pathway is subsequently optimised to fit signalling and behavioural data using an Integer Linear Programming formulation. As a result, we are able to construct maps of primary and transformed hepatocytes downstream of 7 receptors that are capable of explaining the secretion of 22 cytokines.Conclusions: We developed a method for constructing extended pathways that start at the receptor level and via a complex intracellular signalling pathway identify those mechanisms that drive cellular behaviour. Our results constitute a proof-of-principle for construction of ""extended pathways"" that are capable of linking pathway activity to diverse responses such as growth, death, differentiation, gene expression, or cytokine secretion. © 2011 Melas et al; licensee BioMed Central Ltd. en
heal.publisher BIOMED CENTRAL LTD en
heal.journalName BMC Systems Biology en
dc.identifier.doi 10.1186/1752-0509-5-107 en
dc.identifier.isi ISI:000293234500001 en
dc.identifier.volume 5 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής