dc.contributor.author |
Fotakis, C |
en |
dc.contributor.author |
Christodouleas, D |
en |
dc.contributor.author |
Zoumpoulakis, P |
en |
dc.contributor.author |
Kritsi, E |
en |
dc.contributor.author |
Benetis, N-P |
en |
dc.contributor.author |
Mavromoustakos, T |
en |
dc.contributor.author |
Reis, H |
en |
dc.contributor.author |
Gili, A |
en |
dc.contributor.author |
Papadopoulos, MG |
en |
dc.contributor.author |
Zervou, M |
en |
dc.date.accessioned |
2014-03-01T01:35:25Z |
|
dc.date.available |
2014-03-01T01:35:25Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1520-6106 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21041 |
|
dc.subject.classification |
Chemistry, Physical |
en |
dc.subject.other |
2D-NMR spectroscopy |
en |
dc.subject.other |
Ab initio computations |
en |
dc.subject.other |
Active site |
en |
dc.subject.other |
Alkyl chain |
en |
dc.subject.other |
Bilayer surface |
en |
dc.subject.other |
Biophysical studies |
en |
dc.subject.other |
Candesartan |
en |
dc.subject.other |
Drug molecules |
en |
dc.subject.other |
Dynamic property |
en |
dc.subject.other |
Hydrophobic regions |
en |
dc.subject.other |
Lateral diffusion |
en |
dc.subject.other |
Lipid cores |
en |
dc.subject.other |
Losartan |
en |
dc.subject.other |
Membrane bilayers |
en |
dc.subject.other |
Membrane models |
en |
dc.subject.other |
Mesophases |
en |
dc.subject.other |
Micro-domains |
en |
dc.subject.other |
NMR spectroscopy |
en |
dc.subject.other |
Pharmacological properties |
en |
dc.subject.other |
Polar headgroups |
en |
dc.subject.other |
Polar interactions |
en |
dc.subject.other |
Tetrazoles |
en |
dc.subject.other |
Water interface |
en |
dc.subject.other |
Carbon fiber reinforced plastics |
en |
dc.subject.other |
Drug interactions |
en |
dc.subject.other |
Molecules |
en |
dc.subject.other |
Nuclear magnetic resonance spectroscopy |
en |
dc.subject.other |
Phospholipids |
en |
dc.subject.other |
Lipid bilayers |
en |
dc.subject.other |
angiotensin 1 receptor |
en |
dc.subject.other |
benzimidazole derivative |
en |
dc.subject.other |
candesartan |
en |
dc.subject.other |
losartan |
en |
dc.subject.other |
solvent |
en |
dc.subject.other |
tetrazole derivative |
en |
dc.subject.other |
article |
en |
dc.subject.other |
chemistry |
en |
dc.subject.other |
comparative study |
en |
dc.subject.other |
differential scanning calorimetry |
en |
dc.subject.other |
lipid bilayer |
en |
dc.subject.other |
metabolism |
en |
dc.subject.other |
nuclear magnetic resonance spectroscopy |
en |
dc.subject.other |
Raman spectrometry |
en |
dc.subject.other |
Benzimidazoles |
en |
dc.subject.other |
Calorimetry, Differential Scanning |
en |
dc.subject.other |
Lipid Bilayers |
en |
dc.subject.other |
Losartan |
en |
dc.subject.other |
Magnetic Resonance Spectroscopy |
en |
dc.subject.other |
Receptor, Angiotensin, Type 1 |
en |
dc.subject.other |
Solvents |
en |
dc.subject.other |
Spectrum Analysis, Raman |
en |
dc.subject.other |
Tetrazoles |
en |
dc.title |
Comparative biophysical studies of sartan class drug molecules losartan and candesartan (CV-11974) with membrane bilayers |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1021/jp110371k |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1021/jp110371k |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The interactions of the antihypertensive AT1 antagonists candesartan and losartan with membrane bilayers were studied through the application of DSC, Raman, and solid state31P NMR spectroscopies.1H and13C NMR resonances of candesartan were assigned on the basis of 1D and 2D NMR spectroscopy. A31P CP NMR broadline fitting methodology in combination with ab initio computations was implemented and, in conjunction with DSC and Raman results, provided valuable information regarding the perturbation, localization, orientation, and dynamic properties of the drugs in membrane models. In particular, results indicate that losartan anchors in the mesophase region of the lipid bilayers with the tetrazole group oriented toward the polar headgroup, whereas candesartan has less definite localization spanning from water interface toward the mesophase and upper segment of the hydrophobic region. Both sartan molecules decrease the mobilization of the phospholipids alkyl chains. Losartan exerts stronger interactions compared with candesartan, as depicted by the more prominent thermal, structural, and dipolar1H-31P changes that are caused in the lipid bilayers. At higher concentrations, candesartan strengthens the polar interactions and induces increased order at the bilayer surface. At the highest concentration used (20 mol %), only losartan induces formation of microdomains attributed to the flexibility of its alkyl chain. These results in correlation to reported data with other AT1 antagonists strengthen the hypothesis that this class of molecules may approach the active site of the receptor by insertion in the lipid core, followed by lateral diffusion toward the binding site. Further, the similarities and differences of these drugs in their interactions with lipid bilayers establish, at least in part, their pharmacological properties. © 2011 American Chemical Society. |
en |
heal.publisher |
AMER CHEMICAL SOC |
en |
heal.journalName |
Journal of Physical Chemistry B |
en |
dc.identifier.doi |
10.1021/jp110371k |
en |
dc.identifier.isi |
ISI:000290427100052 |
en |
dc.identifier.volume |
115 |
en |
dc.identifier.issue |
19 |
en |
dc.identifier.spage |
6180 |
en |
dc.identifier.epage |
6192 |
en |