dc.contributor.author |
Tsiaparas, NN |
en |
dc.contributor.author |
Golemati, S |
en |
dc.contributor.author |
Andreadis, I |
en |
dc.contributor.author |
Stoitsis, JS |
en |
dc.contributor.author |
Valavanis, I |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.date.accessioned |
2014-03-01T01:35:26Z |
|
dc.date.available |
2014-03-01T01:35:26Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1089-7771 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21047 |
|
dc.subject |
Carotid |
en |
dc.subject |
texture |
en |
dc.subject |
ultrasound |
en |
dc.subject |
wavelet transforms |
en |
dc.subject.classification |
Computer Science, Information Systems |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematical & Computational Biology |
en |
dc.subject.classification |
Medical Informatics |
en |
dc.subject.other |
Basis functions |
en |
dc.subject.other |
Biomechanical factors |
en |
dc.subject.other |
Carotid |
en |
dc.subject.other |
Classification performance |
en |
dc.subject.other |
Decomposition scheme |
en |
dc.subject.other |
Different frequency |
en |
dc.subject.other |
Feature selection |
en |
dc.subject.other |
Gabor transform |
en |
dc.subject.other |
Multi-resolution approach |
en |
dc.subject.other |
Multi-resolution feature |
en |
dc.subject.other |
Non-linear correlations |
en |
dc.subject.other |
Probabilistic neural networks |
en |
dc.subject.other |
Standard deviation |
en |
dc.subject.other |
Stationary wavelet transforms |
en |
dc.subject.other |
Subimages |
en |
dc.subject.other |
Texture analysis |
en |
dc.subject.other |
Texture classification |
en |
dc.subject.other |
Texture features |
en |
dc.subject.other |
Thresholding |
en |
dc.subject.other |
ultrasound |
en |
dc.subject.other |
Wavelet packets |
en |
dc.subject.other |
Biomechanics |
en |
dc.subject.other |
Discrete wavelet transforms |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Frequency bands |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Support vector machines |
en |
dc.subject.other |
Ultrasonics |
en |
dc.subject.other |
Wavelet decomposition |
en |
dc.subject.other |
Textures |
en |
dc.title |
Comparison of multiresolution features for texture classification of carotid atherosclerosis from B-Mode ultrasound |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TITB.2010.2091511 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TITB.2010.2091511 |
en |
heal.identifier.secondary |
5629371 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this paper, a multiresolution approach is suggested for texture classification of atherosclerotic tissue from B-mode ultrasound. Four decomposition schemes, namely, the discrete wavelet transform, the stationary wavelet transform, wavelet packets (WP), and Gabor transform (GT), as well as several basis functions, were investigated in terms of their ability to discriminate between symptomatic and asymptomatic cases. The mean and standard deviation of the detail subimages produced for each decomposition scheme were used as texture features. Feature selection included 1) ranking the features in terms of their divergence values and 2) appropriately thresholding by a nonlinear correlation coefficient. The selected features were subsequently input into two classifiers using support vector machines (SVM) and probabilistic neural networks. WP analysis and the coiflet 1 produced the highest overall classification performance (90% for diastole and 75% for systole) using SVM. This might reflect WP's ability to reveal differences in different frequency bands, and therefore, characterize efficiently the atheromatous tissue. An interesting finding was that the dominant texture features exhibited horizontal directionality, suggesting that texture analysis may be affected by biomechanical factors (plaque strains). © 2006 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Information Technology in Biomedicine |
en |
dc.identifier.doi |
10.1109/TITB.2010.2091511 |
en |
dc.identifier.isi |
ISI:000286009500017 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
130 |
en |
dc.identifier.epage |
137 |
en |