dc.contributor.author |
Charalampidis, AC |
en |
dc.contributor.author |
Papavassilopoulos, GP |
en |
dc.date.accessioned |
2014-03-01T01:35:27Z |
|
dc.date.available |
2014-03-01T01:35:27Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0018-9286 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21052 |
|
dc.subject |
Covariance matrices |
en |
dc.subject |
nonlinear filters |
en |
dc.subject |
numerical methods |
en |
dc.subject |
recursive state estimation |
en |
dc.subject |
state space methods |
en |
dc.subject |
unscented Kalman filtering |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Computational costs |
en |
dc.subject.other |
Computationally efficient |
en |
dc.subject.other |
Covariance matrices |
en |
dc.subject.other |
Discrete-time nonlinear systems |
en |
dc.subject.other |
Hermite |
en |
dc.subject.other |
Illustrative examples |
en |
dc.subject.other |
Kalman-filtering |
en |
dc.subject.other |
Non-Linearity |
en |
dc.subject.other |
Nonlinear filter |
en |
dc.subject.other |
Recursive state estimation |
en |
dc.subject.other |
Special structure |
en |
dc.subject.other |
Unscented Kalman Filter |
en |
dc.subject.other |
Unscented Kalman filtering |
en |
dc.subject.other |
Variable functions |
en |
dc.subject.other |
Covariance matrix |
en |
dc.subject.other |
Estimation |
en |
dc.subject.other |
Kalman filters |
en |
dc.subject.other |
Nonlinear analysis |
en |
dc.subject.other |
Nonlinear filtering |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Recursive functions |
en |
dc.subject.other |
State estimation |
en |
dc.subject.other |
State space methods |
en |
dc.subject.other |
Numerical methods |
en |
dc.title |
Computationally efficient Kalman filtering for a class of nonlinear systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TAC.2010.2078090 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TAC.2010.2078090 |
en |
heal.identifier.secondary |
5582210 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
This paper deals with recursive state estimation for the class of discrete time nonlinear systems whose nonlinearity consists of one or more static nonlinear one-variable functions. This class contains several important subclasses. The special structure is exploited to permit accurate computations without an increase in computational cost. The proposed method is compared with standard Extended Kalman Filter, Unscented Kalman Filter and Gauss-Hermite Kalman Filter in three illustrative examples. The results show that it yields good results with small computational cost. © 2006 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Automatic Control |
en |
dc.identifier.doi |
10.1109/TAC.2010.2078090 |
en |
dc.identifier.isi |
ISI:000289211100001 |
en |
dc.identifier.volume |
56 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
483 |
en |
dc.identifier.epage |
491 |
en |