dc.contributor.author |
Polyrakis, IA |
en |
dc.contributor.author |
Xanthos, F |
en |
dc.date.accessioned |
2014-03-01T01:35:27Z |
|
dc.date.available |
2014-03-01T01:35:27Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1385-1292 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/21054 |
|
dc.subject |
Bases for cones |
en |
dc.subject |
c+0.l+1 |
en |
dc.subject |
Cones |
en |
dc.subject |
Conic isomorphisms |
en |
dc.subject |
Grothendieck spaces |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
PROPERTY |
en |
dc.subject.other |
REFLEXIVITY |
en |
dc.title |
Cone characterization of Grothendieck spaces and Banach spaces containing c0 |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11117-010-0103-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11117-010-0103-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
In this article we study the embeddability of cones in a Banach space X. First we prove that c0 is embeddable in X if and only if its positive cone c+0 is embeddable in X and we study some properties of Banach spaces containing c0 in the light of this result. So, unlike with the positive cone of ℓ1 which is embeddable in any non-reflexive space, c+0 has the same behavior as the whole space c0. In the second part of this article we give a characterization of Grothendieck spaces X according to the geometry of cones of X*. By these results we give a partial positive answer to a problem of J. H. Qiu concerning the geometry of cones. © 2010 Springer Basel AG. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Positivity |
en |
dc.identifier.doi |
10.1007/s11117-010-0103-7 |
en |
dc.identifier.isi |
ISI:000297545400008 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
677 |
en |
dc.identifier.epage |
693 |
en |