HEAL DSpace

Cone characterization of Grothendieck spaces and Banach spaces containing c0

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Polyrakis, IA en
dc.contributor.author Xanthos, F en
dc.date.accessioned 2014-03-01T01:35:27Z
dc.date.available 2014-03-01T01:35:27Z
dc.date.issued 2011 en
dc.identifier.issn 1385-1292 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21054
dc.subject Bases for cones en
dc.subject c+0.l+1 en
dc.subject Cones en
dc.subject Conic isomorphisms en
dc.subject Grothendieck spaces en
dc.subject.classification Mathematics en
dc.subject.other PROPERTY en
dc.subject.other REFLEXIVITY en
dc.title Cone characterization of Grothendieck spaces and Banach spaces containing c0 en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11117-010-0103-7 en
heal.identifier.secondary http://dx.doi.org/10.1007/s11117-010-0103-7 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract In this article we study the embeddability of cones in a Banach space X. First we prove that c0 is embeddable in X if and only if its positive cone c+0 is embeddable in X and we study some properties of Banach spaces containing c0 in the light of this result. So, unlike with the positive cone of ℓ1 which is embeddable in any non-reflexive space, c+0 has the same behavior as the whole space c0. In the second part of this article we give a characterization of Grothendieck spaces X according to the geometry of cones of X*. By these results we give a partial positive answer to a problem of J. H. Qiu concerning the geometry of cones. © 2010 Springer Basel AG. en
heal.publisher SPRINGER en
heal.journalName Positivity en
dc.identifier.doi 10.1007/s11117-010-0103-7 en
dc.identifier.isi ISI:000297545400008 en
dc.identifier.volume 15 en
dc.identifier.issue 4 en
dc.identifier.spage 677 en
dc.identifier.epage 693 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής