HEAL DSpace

Coupling biomechanics to a cellular level model: An approach to patient-specific image driven multi-scale and multi-physics tumor simulation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author May, CP en
dc.contributor.author Kolokotroni, E en
dc.contributor.author Stamatakos, GS en
dc.contributor.author Buchler, P en
dc.date.accessioned 2014-03-01T01:35:28Z
dc.date.available 2014-03-01T01:35:28Z
dc.date.issued 2011 en
dc.identifier.issn 0079-6107 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/21063
dc.subject Biological system modeling en
dc.subject Biomechanics en
dc.subject Finite element methods en
dc.subject In silico oncology en
dc.subject Multiscale cancer modeling en
dc.subject Pressure effects en
dc.subject.classification Biochemistry & Molecular Biology en
dc.subject.classification Biophysics en
dc.subject.other article en
dc.subject.other biological model en
dc.subject.other biomechanics en
dc.subject.other biophysics en
dc.subject.other finite element analysis en
dc.subject.other glioblastoma en
dc.subject.other human en
dc.subject.other mechanics en
dc.subject.other Monte Carlo method en
dc.subject.other nuclear magnetic resonance imaging en
dc.subject.other pathology en
dc.subject.other system analysis en
dc.subject.other treatment outcome en
dc.subject.other Biomechanics en
dc.subject.other Biophysical Processes en
dc.subject.other Finite Element Analysis en
dc.subject.other Glioblastoma en
dc.subject.other Humans en
dc.subject.other Magnetic Resonance Imaging en
dc.subject.other Mechanical Processes en
dc.subject.other Models, Biological en
dc.subject.other Monte Carlo Method en
dc.subject.other Systems Integration en
dc.subject.other Treatment Outcome en
dc.title Coupling biomechanics to a cellular level model: An approach to patient-specific image driven multi-scale and multi-physics tumor simulation en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.pbiomolbio.2011.06.007 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.007 en
heal.language English en
heal.publicationDate 2011 en
heal.abstract Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. (C) 2011 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Progress in Biophysics and Molecular Biology en
dc.identifier.doi 10.1016/j.pbiomolbio.2011.06.007 en
dc.identifier.isi ISI:000296544000019 en
dc.identifier.volume 107 en
dc.identifier.issue 1 en
dc.identifier.spage 193 en
dc.identifier.epage 199 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής